Titanium (Ti) alloys are widely used in high-tech fields like aerospace and biomedical engineering. Laser additive manufacturing (LAM), as an innovative technology, is the key driver for the development of Ti alloys. Despite the significant advancements in LAM of Ti alloys, there remain challenges that need further research and development efforts. To recap the potential of LAM high-performance Ti alloy, this article systematically reviews LAM Ti alloys with up-to-date information on process, materials, and properties. Several feasible solutions to advance LAM Ti alloys are reviewed, including intelligent process parameters optimization, LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM. The auxiliary energy fields (e.g. thermal, acoustic, mechanical deformation and magnetic fields) can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys, altering microstructures and mechanical performances. Different kinds of novel Ti alloys customized for LAM, like peritectic α-Ti, eutectoid (α + β)-Ti, hybrid (α + β)-Ti, isomorphous β-Ti and eutectic β-Ti alloys are reviewed in detail. Furthermore, machine learning in accelerating the LAM process optimization and new materials development is also outlooked. This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys. In addition, the perspectives and further trends in LAM of Ti alloys are also highlighted.
- Article type
- Year
- Co-author


The unique continuous extrusion-based severe plastic deformation approaches were proposed recently to process high-performance magnesium (Mg) alloys, while the in-depth deformation mechanisms under such complicated thermomechanical conditions were not well understood. In the present work, the fundamental deformation behaviors of AZ61 Mg alloy from 25 to 400 °C were firstly examined under uniaxial compression deformation. Then the deformation mechanisms and microstructural characteristics of AZ61 Mg alloy during continuous expansion extrusion forming (CEEF) were systematically investigated by microstructural observations, finite element and cellular automata simulations. The results showed that the continuous evolutions of temperature, larger strain level and complex stress state with strain rate range of 0 ∼ 5.98 s−1 during CEEF brought the distinctive dynamic recrystallization behaviors and texture development in AZ61 Mg alloy, which were different to that of uniaxial compression deformation. In details, a remarkable grain refinement was achieved via CEEF processing due to the simultaneous actions of continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX). Gradually enhanced CDRX were observed from center to edge region, which had significant effects on the texture distribution and texture strength. The c-axis of most grains rotated under distinctive shear strain following parabolic metal flow, resulting in stable fiber texture. In addition, the evolution of the internal texture of the alloy led to an obvious increase in the Schmid factor for the activation of basal 〈c + a〉 slip system.

To date, the synthesis of crystalline ZnO nanostructures was often performed under high temperatures and/or high pressures with tiny output, which limits their commercial applications. Herein, we report the progress on synthesizing single-crystalline ZnO nanosheets under ambient conditions (i.e., room temperature (RT) and atmospheric pressure) based on a sonochemistry strategy. Furthermore, their controllable growth is accomplished by adjusting the pH values of solutions, enabling the tailored crystal growth habits on the polar-charged faces of ZnO along c-axis. As a proof of concept for their potential applications, the ZnO nanosheets exhibit highly efficient performance for sensing ammonia at RT, with ultrahigh sensitivity (S = 610 at 100 ppm), excellent selectivity, rapid detection (response time/recover time = 70 s/4 s), and outstanding detection limit down to 0.5 ppm, superior to those of all pure ZnO nanostructures and most ZnO-based composite counterparts ever reported. The present work might open a door for controllable production of ZnO nanostructures under mild conditions, and facilitate the exploration of modern gas sensors for detecting gaseous molecules at RT, which underscores their potential toward practical applications in opto-electronic nanodevices.

Magnesium matrix composites are a new generation of biocompatible implant materials, but they will inevitably undergo simultaneous wear and corrosion in the human body. In this study, hydroxyapatite (Ca10(PO4)6(OH)2, HA) is used in a magnesium matrix composite to study its effects on the corrosion-wear behavior. Two samples (a magnesium alloy composed of Mg, Zn, and Zr (ZK60) alloy and ZK60/10HA composite) were fabricated using the powder metallurgy (PM) process. Their corrosion-wear behavior was investigated using the sliding wear test in a simulated body fluid (SBF). At all the sliding velocities tested, the corrosion- wear resistance of ZK60/10HA was superior to ZK60. At a sliding velocity of 942.5 mm/min, ZK60/10HA demonstrated a 42% improvement in corrosion-wear resistance compared to ZK60. For ZK60, the main wear mechanism under dry conditions was abrasion, while the wear mechanisms in the SBF were abrasion and corrosion. For ZK60/10HA, the wear mechanisms under dry conditions were abrasion and delamination, while in SBF they were mainly abrasion and corrosion, accompanied by slight delamination. The results indicated that HA particles can be used as an effective corrosion-wear inhibitor in biocompatible magnesium matrix composites.