Sort:
Open Access Research Article Issue
Anomalies in the short-range local environment and atomic diffusion in single crystalline equiatomic CrMnFeCoNi high-entropy alloy
Nano Research 2024, 17 (6): 5336-5348
Published: 27 February 2024
Downloads:133

Multi-edge extended X-ray absorption fine structure (EXAFS) spectroscopy combined with reverse Monte Carlo (RMC) simulations was used to probe the details of element-specific local coordinations and component-dependent structure relaxations in single crystalline equiatomic CrMnFeCoNi high-entropy alloy as a function of the annealing temperature. Two representative states, namely a high-temperature state, created by annealing at 1373 K, and a low-temperature state, produced by long-term annealing at 993 K, were compared in detail. Specific features identified in atomic configurations of particular principal components indicate variations in the local environment distortions connected to different degrees of compositional disorder at the chosen representative temperatures. The detected changes provide new atomistic insights and correlate with the existence of kinks previously observed in the Arrhenius dependencies of component diffusion rates in the CrMnFeCoNi high-entropy alloy.

Open Access Research Article Issue
Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale
Nano Research 2023, 16 (4): 5626-5639
Published: 15 February 2023
Downloads:174

The huge atomic heterogeneity of high-entropy materials along with a possibility to unravel the behavior of individual components at the atomic scale suggests a great promise in designing new compositionally complex systems with the desired multi-functionality. Herein, we apply multi-edge X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and X-ray magnetic circular dichroism (XMCD)) to probe the structural, electronic, and magnetic properties of all individual constituents in the single-phase face-centered cubic (fcc)-structured nanocrystalline thin film of Cr20Mn26Fe18Co19Ni17 (at.%) high-entropy alloy on the local scale. The local crystallographic ordering and component-dependent lattice displacements were explored within the reverse Monte Carlo approach applied to EXAFS spectra collected at the K absorption edges of several constituents at room temperature. A homogeneous short-range fcc atomic environment around the absorbers of each type with very similar statistically averaged interatomic distances (2.54–2.55 Å) to their nearest-neighbors and enlarged structural relaxations of Cr atoms were revealed. XANES and XMCD spectra collected at the L2,3 absorption edges of all principal components at low temperature from the oxidized and in situ cleaned surfaces were used to probe the oxidation states, the changes in the electronic structure, and magnetic behavior of all constituents at the surface and in the sub-surface volume of the film. The spin and orbital magnetic moments of Fe, Co, and Ni components were quantitatively evaluated. The presence of magnetic phase transitions and the co-existence of different magnetic phases were uncovered by conventional magnetometry in a broad temperature range.

Open Access Research Article Issue
Al-driven peculiarities of local coordination and magnetic properties in single-phase Alx-CrFeCoNi high-entropy alloys
Nano Research 2022, 15 (6): 4845-4858
Published: 24 July 2021
Downloads:52

Modern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. The revealed unimodal and bimodal distributions of all five elements are in agreement with structure-dependent magnetic properties of studied alloys probed by magnetometry. A degree of surface atoms oxidation uncovered by soft X-rays suggests different kinetics of oxide formation for each type of constituents and has to be taken into account. X-ray magnetic circular dichroism technique employed at L2,3 absorption edges of transition metals demonstrates reduced magnetic moments of 3d metal constituents in the sub-surface region of in situ cleaned fcc-structured Al0.3-CrFeCoNi compared to their bulk values. Extended to nanostructured versions of multicomponent alloys, such studies would bring new insights related to effects of high entropy mixing on low dimensions.

total 3