Sort:
Research Article Online first
Engineered interface of three-dimensional coralliform NiS/FeS2 heterostructures for robust electrocatalytic water cleavage
Nano Research
Published: 05 August 2023
Downloads:42

Heterojunction structures improve the intrinsic activity of electrocatalysts by enhancing the charge transfer between the catalyst and the electrode. In this paper, the NiS/FeS2 heterostructured electrocatalyst is fabricated by a simple sulfidation method using an interface engineering strategy to adjust the surface electron density of the electrocatalyst. As expected, NiS/FeS2 electrocatalyst exhibits superior activity and durable oxygen evolution reaction (OER) stability, requiring only a low overpotential of 183 mV to achieve a current density of 10 mA·cm−2 and can be stable for more than 80 h, superior to NiS, FeS2 electrocatalyst individually, and precious RuO2. Notably, NiS/FeS2 is also a good bifunctional electrocatalyst with good overall water splitting performance, and it only requires a voltage 1.56 V to obtain a current density of 10 mA·cm−2 for more than 12 h. Remarkably, the NiS/FeS2 hybridization facilitates the formation of coral-like structures, increasing the electrochemical surface area (ECSA) and enhancing the charge transfer efficiency, thus leading to excellent electrocatalytic performance. This work proposes a constructive strategy for designing efficient electrocatalysts based on interface engineering, and lays a foundation for designing a new class of electrocatalysts.

Research Article Issue
N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media
Nano Research 2022, 15 (1): 304-309
Published: 26 April 2021
Downloads:47

Electrocatalytic oxygen reduction reaction (ORR) provides an attractive alternative to anthraquinone process for H2O2 synthesis. Rational design of earth-abundant electrocatalysts for H2O2 synthesis via a two-electron ORR process in acids is attractive but still very challenging. In this work, we report that nitrogen-doped carbon nanotubes as a multi-functional support for CoSe2 nanoparticles not only keep CoSe2 nanoparticles well dispersed but alter the crystal structure, which in turn improves the overall catalytic behaviors and thereby renders high O2-to-H2O2 conversion efficiency. In 0.1 M HClO4, such CoSe2@NCNTs hybrid delivers a high H2O2 selectivity of 93.2% and a large H2O2 yield rate of 172 ppm·h−1 with excellent durability up to 24 h. Moreover, CoSe2@NCNTs performs effectively for organic dye degradation via electro-Fenton process.

total 2