Publications
Sort:
Research Article Issue
Temperature modulation of concentration quenching in lanthanide-doped nanoparticles for enhanced upconversion luminescence
Nano Research 2018, 11 (4): 2104-2115
Published: 19 March 2018
Downloads:23

The doping concentration of lanthanide ions is important for manipulating the luminescence properties of upconversion nanoparticles (UCNPs). However, the serious concentration quenching in highly doped UCNPs remains a vital restriction for further enhanced upconversion luminescence (UCL). Herein, we examined the effect of temperature on the concentration quenching of rare-earth UCNPs, an issue that has been overlooked, and we show that it is significant for biomedical or optical applications of UCNPs. In this work, we prepared a series of UCNPs by doping Er3+ luminescent centers at different concentrations in a NaLuF4: Yb3+ matrix. At room temperature (298 K), steady-state photoluminescence (PL) spectroscopy showed substantial concentration quenching of the Er3+ emission with increasing doping concentrations. However, the concentration quenching effect was no longer effective at lower temperatures. Kinetic curves obtained from time-resolved PL spectroscopy further showed that the concentration quenching dynamics were vitally altered in the cryogenic temperature region, i.e., below 160 K. Our work on the temperature-switchable concentration quenching mechanism may shed light on improving UCL properties, promoting their practical applications.

total 1