Uniform colloidal Bi2S3 nanodots and nanorods with different sizes have been prepared in a controllable manner via a hot injection method. X-ray diffraction (XRD) results show that the resulting nanocrystals have an orthorhombic structure. Both the diameter and length of the nanorods increase with increasing concentration of the precursors. All of the prepared Bi2S3 nanostructures show high efficiency in the photodegradation of rhodamine B, especially in the case of small sized nanodots—which is possibly due to their high surface area. The dynamics of the photocatalysis is also discussed.
- Article type
- Year
- Co-author


This paper reports an effective method for the synthesis of platinum nanostructures with anisotropic morphologies by decomposition of platinum dichloride in oleylamine at intermediate temperatures catalyzed by gold seed nanoparticles. A small quantity of spherical gold nanoparticles formed in situ was used to trigger the nucleation and anisotropic growth of the Pt nanocrystals. By varying the amount of gold seed nanoparticles, porous flower-like, irregular polyhedron-shaped, multi-branched rod shaped, and caterpillar-like Pt nanostructures were produced in high yields at 190–240 ℃ in reaction times of a few minutes. Control of morphology under different conditions has been systematically studied and a kinetically controlled induced growth mechanism has been proposed.