Sort:
Open Access Review Article Issue
Challenges and Prospects of Nanopillar-Based Solar Cells
Nano Research 2009, 2 (11): 829-843
Published: 11 November 2009
Downloads:46

Materials and device architecture innovations are essential for further enhancing the performance of solar cells while potentially enabling their large-scale integration as a viable source of alternative energy. In this regard, tremendous research has been devoted in recent years with continuous progress in the field. In this article, we review the recent advancements in nanopillar-based photovoltaics while discussing the future challenges and prospects. Nanopillar arrays provide unique advantages over thin films in the areas of optical properties and carrier collection, arising from their three-dimensional geometry. The choice of the material system, however, is essential in order to gain the advantage of the large surface/interface area associated with nanopillars with the constraints different from those of the thin film devices.

Open Access Research Article Issue
Synthesis, Contact Printing, and Device Characterization of Ni-Catalyzed, Crystalline InAs Nanowires
Nano Research 2008, 1 (1): 32-39
Published: 12 July 2008
Downloads:23

InAs nanowires have been actively explored as the channel material for high performance transistors owing to their high electron mobility and ease of ohmic metal contact formation. The catalytic growth of nonepitaxial InAs nanowires, however, has often relied on the use of Au colloids which is non-CMOS compatible. Here, we demonstrate the successful synthesis of crystalline InAs nanowires with high yield and tunable diameters by using Ni nanoparticles as the catalyst material on amorphous SiO2 substrates. The nanowires show superb electrical properties with field-effect electron mobility ~2700 cm2/Vs and ION/IOFF > 103. The uniformity and purity of the grown InAs nanowires are further demonstrated by large-scale assembly of parallel arrays of nanowires on substrates via the contact printing process that enables high performance, "printable" transistors, capable of delivering 5–10 mA ON currents (~400 nanowires).

total 2