Sort:
Research Article Issue
Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction
Nano Research 2020, 13 (11): 3088-3097
Published: 18 August 2020
Downloads:56

Surface engineering is known as an effective strategy to enhance the catalytic properties of Pt-based nanomaterials. Herein, we report on surface engineering Ni-Pt nanoalloys with a facile method by varying the Ni doping concentration and oleylamine/oleic- acid surfactant-mix. The alloy-composition, exposed facet condition, and surface lattice strain are, thereby manipulated to optimize the catalytic efficiency of such nanoalloys for methanol oxidation reaction (MOR). Exemplary nanoalloys including Ni0.69Pt0.31 truncated octahedrons, Ni0.45Pt0.55 nanomultipods and Ni0.20Pt0.80 nanoflowers are thoroughly characterized, with a commercial Pt/C catalyst as a common benchmark. Their variations in MOR catalytic efficiency are significant: 2.2 A/mgPt for Ni0.20Pt0.80 nanoflowers, 1.2 A/mgPt for Ni0.45Pt0.55 nanomultipods, 0.7 A/mgPt for Ni0.69Pt0.31 truncated octahedrons, and 0.6 A/mgPt for the commercial Pt/C catalysts. Assisted by density functional theory calculations, we correlate these observed catalysis-variations particularly to the intriguing presence of surface interplanar-strains, such as {111} facets with an interplanar-tensile-strain of 2.6% and {200} facets with an interplanar-tensile-strain of 3.5%, on the Ni0.20Pt0.80 nanoflowers.

Research Article Issue
Giant enhancement and anomalous temperature dependence of magnetism in monodispersed NiPt2 nanoparticles
Nano Research 2017, 10 (9): 3238-3247
Published: 27 June 2017
Downloads:21

A simple yet general one-step solvothermal method is applied to synthesize sub-7 nm monodispersed single-crystal NiPt2 nanoparticles (NPs) with the morphology of truncated octahedrons in the alloying state of disordered atomic arrangements. The effective magnetic moments of these NPs exhibit an anomalous temperature dependency, increasing from approximately 0.9 μB/atom at 15 K to 1.9 μB/atom at 300 K. This is an increase by a factor of more than three compared with bulk Ni. On the basis of experiments involving X-ray absorption near-edge spectroscopy of the L3 edge for Pt and density functional theory calculations, the observed novel magnetism enhancement and its anomalous temperature dependence are attributed to the electron transfer arising from the thermal-activation effects.

total 2