Sort:
Research Article Issue
Direct observation of the plasmon-enhanced palladium catalysis with single-molecule fluorescence microscopy
Nano Research 2023, 16 (7): 8817-8826
Published: 24 March 2023
Downloads:244

Plasmonic nanostructures have been proved effective not only in catalyzing chemical reactions, but also in improving the activity of non-plasmonic photocatalysts. It is essential to reveal the synergy between the plasmonic structure and the non-plasmonic metal photocatalyst for expounding the underlying mechanism of plasmon-enhanced catalysis. Herein, the enhancement of resazurin reduction at the heterostructure of silver nanowire (AgNW) and palladium nanoparticles (PdNPs) is observed in situ by single-molecule fluorescence microscopy. The catalysis mapping results around single AgNW suggest that the catalytic activity of PdNPs is enhanced for ~ 20 times due to the excitation of localized surface plasmon resonance (LSPR) in the vicinity of the AgNW. This catalysis enhancement is also highly related to the wavelength and polarization of the excitation light. In addition, the palladium catalysis is further enhanced by ~ 10 times in the vicinity of a roughened AgNW or a AgNW–AgNW nanogap because of the improvement of catalytic hotspots. These findings clarify the contribution of plasmon excitation in palladium catalysis at microscopic scale, which will help to deepen the understanding of the plasmon-enhanced photocatalysis and provide a guideline for developing highly efficient plasmon-based photocatalysts.

Research Article Issue
Scrolling bilayer WS2/MoS2 heterostructures for high-performance photo-detection
Nano Research 2020, 13 (4): 959-966
Published: 11 April 2020
Downloads:39

Recently, transition metal dichalcogenides (TMDCs) nanoscrolls have exhibited unique electronic and optical properties due to their spiral tubular structures, which are formed by rolling up monolayer TMDCs nanosheets. Inspired by the excellent physical and chemical properties of TMDCs van der Waals heterostructures (vdWHs), it is highly desirable to scroll TMDCs vdWHs for potential optoelectronic applications. In this work, WS2/MoS2 vdWHs nanoscrolls were massively prepared by dropping aqueous alkaline droplet on chemical vapor deposition (CVD)-grown bilayer WS2/MoS2 vdWHs, which were formed by growing monolayer WS2 islands on top of monolayer MoS2 nanosheets simultaneously. The optical microscopy (OM), atomic force microscopy (AFM), ultralow frequency (ULF) Raman spectroscopy and transmission electron microscopy (TEM) were utilized to characterize the WS2/MoS2 vdWHs nanoscrolls. As-obtained WS2/MoS2 vdWHs nanoscrolls exhibited new ULF breathing mode as well as shear mode peaks due to the strong interlayer interaction. Notably, the photosensitivities of WS2/MoS2 vdWHs nanoscrolls-based devices were about ten times higher than those of WS2/MoS2 vdWHs-based devices under blue, green and red lasers, respectively, which could be attributed to the ultrafast charge transfer at alternative WS2/MoS2 and MoS2/WS2 multi-interfaces in scrolled structure. Our work suggested that TMDCs vdWHs scrolls could be promising candidates for optoelectronic applications.

Research Article Issue
Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions
Nano Research 2017, 10 (5): 1710-1719
Published: 27 February 2017
Downloads:7

Creating pores in suprastructures of two-dimensional (2D) materials while controlling the orientation of the 2D building blocks is important in achieving large specific surface areas and tuning the anisotropic properties of the obtained functional hierarchical structures. In this contribution, we report that arranging graphitic carbon nitride (g-C3N4) nanosheets into one-dimensional (1D) architectures with controlled orientation has been achieved by using 1D oriented melem hydrate fibers as the synthetic precursor via a polycondensation process, during which the removal of water molecules and release of ammonia gas led to the creation of pores without destroying the 1D morphology of the oriented structures. The resulting porous g-C3N4 fibers with both meso- and micro-sized pores and largely exposed edges exhibited good sensing sensitivity and selectivity towards NO2. The sensing performance was further improved by hybridization of the porous fibers with Au nanoparticles (Au NPs), leading to a detection limit of 60 ppb under ambient conditions. Our results suggest that the highly porous g-C3N4 fibers and the related hybrid structures with largely exposed graphitic layer edges are excellent sensing platforms and may also show promise in other electronic and electrochemical applications.

total 3