Sort:
Research Article Issue
Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide
Nano Research 2019, 12 (11): 2827-2834
Published: 26 September 2019
Downloads:10

The amyloid aggregation of peptides and proteins is a hallmark of neurological disorders and type 2 diabetes. Human islet amyloid polypeptide (IAPP), co-secreted with insulin by pancreatic β-cells, plays dual roles in both glycemic control and the pathology of type 2 diabetes. While IAPP can activate the NLRP3 inflammasome and modulate cellular autophagy, apoptosis and extracellular matrix metabolism, no data is available concerning intracellular protein expression upon exposure to the polypeptide. More surprisingly, how intracellular protein expression is modulated by nanoparticle inhibitors of protein aggregation remains entirely unknown. In this study, we first examined the changing proteomes of βTC6, a pancreatic β-cell line, upon exposure to monomeric, oligomeric and fibrillar IAPP, and detailed cellular protein expression rescued by graphene quantum dots (GQDs), an IAPP inhibitor. We found that 29 proteins were significantly dysregulated by the IAPP species, while majority of these proteins were nucleotide-binding proteins. Collectively, our liquid chromatography tandem-mass spectrometry, fluorescence quenching, helium ion microscopy, cytotoxicity and discreet molecular dynamics simulations data revealed a remarkable capacity of GQDs in regulating aberrant protein expression through H-bonding and hydrophobic interactions, pointing to nanomedicine as a new frontier against human amyloid diseases.

Research Article Issue
Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules
Nano Research 2018, 11 (7): 3636-3647
Published: 02 August 2018
Downloads:18

Understanding how small molecules interface with amyloid fibrils at the nanoscale is of importance for developing therapeutic treatments against amyloid-based diseases. Here, we show for the first time that human islet amyloid polypeptides (IAPP) in the fibrillar form are polymorphic, ambidextrous, and possess multiple periodicities. Upon interfacing with the small molecule epigallocatechin gallate (EGCG), IAPP aggregation was rendered off-pathway and assumed a form with soft and disordered clusters, while mature IAPP fibrils displayed kinks and branching but conserved the twisted fibril morphology. These nanoscale phenomena resulted from competitive interactions between EGCG and the IAPP amyloidogenic region, as well as end capping of the fibrils by the small molecule. This information is crucial in delineating IAPP toxicity implicated in type 2 diabetes and for developing new inhibitors against amyloidogenesis.

total 2