Sort:
Research Article Issue
High performance Zn-I2 battery with acetonitrile electrolyte working at low temperature
Nano Research 2022, 15 (4): 3170-3177
Published: 23 October 2021
Downloads:53

Large scale applications of metal-iodine batteries working at sub-zero degree have been challenged by the limited capacity and performance degradation. Herein, we firstly propose a Zn-I2 battery working at low temperature with a carbon composite material/iodine (CCM-I2) cathode, a Zn anode and an environmentally tolerable Zn(ClO4)2-ACN electrolyte. The CCM framework with hierarchical porous structure endows a powerful iodine-anchoring to overcome undesirable dissolution of iodine in organic electrolyte, and the Zn(ClO4)2-ACN electrolyte with low freezing point and high ionic conductivity enhances the low temperature performance. The synergies enable an efficiently reversible conversion of Zn-I2 battery even at −40 °C. Therefore, the resultant Zn-I2 battery delivers a high specific capacity of 200 mAh·g−1, which is fairly approximate to the theoretical capacity of I2 (211 mAh·g−1) and a superior cycling stability with minimal capacity fading of 0.00043% per cycle over 7,000 times under 2C at −20 °C. Furthermore, even at −40 °C, this Zn-I2 battery still exhibits a good capacity retention of 68.7% compared to the capacity at 25 °C and a rapid capacity-recover ability with elevating temperature change. Our results distinctly indicate this Zn-I2 battery can be competent for the practical application under low temperature operation.

Research Article Issue
A sustainable aqueous Zn-I2 battery
Nano Research 2018, 11 (7): 3548-3554
Published: 02 August 2018
Downloads:53

Rechargeable metal-iodine batteries are an emerging attractive electrochemical energy storage technology that combines metallic anodes with halogen cathodes. Such batteries using aqueous electrolytes represent a viable solution for the safety and cost issues associated with organic electrolytes. A hybrid-electrolyte battery architecture has been adopted in a lithium-iodine battery using a solid ceramic membrane that protects the metallic anode from contacting the aqueous electrolyte. Here we demonstrate an eco-friendly, low-cost zinc-iodine battery with an aqueous electrolyte, wherein active I2 is confined in a nanoporous carbon cloth substrate. The electrochemical reaction is confined in the nanopores as a single conversion reaction, thus avoiding the production of I3- intermediates. The cathode architecture fully utilizes the active I2, showing a capacity of 255 mAh·g-1 and low capacity cycling fading. The battery provides an energy density of ~ 151 Wh·kg-1 and exhibits an ultrastable cycle life of more than 1, 500 cycles.

total 2