Publications
Sort:
Open Access Research Article Issue
Tribological performance of various metal-doped carbon dots as water-based lubricant additives and their potential application as additives of poly(ethylene glycol)
Friction 2022, 10 (5): 688-705
Published: 23 March 2021
Downloads:28

Advances in nano-lubricant additives are vital to the pursuit of energy efficiency and sustainable development. Carbon dots (CDs) have been widely investigated in the domain of lubricant additives owing to their extraordinary tribological properties, in particular, their friction-reducing and anti-wear properties. Metal-doped CDs are a new type of CDs, and their friction-reducing and anti-wear properties are attracting increasing attention. Therefore, a series of CDs doped with various divalent metal ions have been successfully synthesized via one-pot pyrolysis. The tribological properties of the synthesized CDs as water-based lubricant additives are in the following order: Zn-CDs > Cu-CDs >> Mg-CDs > Fe-CDs > U-CDs. Specifically, adding 1.0 wt% of Zn-CDs into water-based lubricant results in 62.5% friction and 81.8% wear reduction. Meanwhile, the load-carrying capacity of the water-based lubricant increases from 120 N to at least 500 N. Zn-CDs as an additive have long service life. Additionally, anion-tuned Zn-CDs fabricated via anion exchange exhibit promise as lubricant additives for poly(ethylene glycol). Based on the results of wear scar surface analyses, it is discovered that tribochemical films, primarily composed of iron oxides, nitrides, metal carbonates, zinc oxides, zinc carbonates, organic compounds, and embedded carbon cores, formed on the rubbing surfaces with a thickness of approximately 270 nm when Zn-CDs are used as additives. This film combined with the "ball-bearing" and third-particle effects of Zn-CDs contributed to excellent lubrication performance.

Open Access Research Article Issue
Black phosphorus quantum dots: A new-type of water-based high-efficiency lubricant additive
Friction 2021, 9 (6): 1528-1542
Published: 15 November 2020
Downloads:36

Black phosphorus quantum dots (BPQDs), obtained via a typical solution-based top-down method, were used as water-based lubricant additives. BPQDs exhibited remarkable friction reduction and anti-wear properties even at the ultra-low concentration of 0.005 wt%, which reduced the friction coefficient and wear volume of the base liquid by 32.3% and 56.4%, respectively. In addition, the load-supporting capacity of the base liquid increased from 120 N to over 300 N. BPQDs-based additives exhibited a relatively long lifetime at a relatively high load of 80 N. The performance of BPQDs considerably exceeded that of the BP; this may be attributed to their small and uniform particle size, good dispersion stability in water, and high reactivity at the frictional surfaces. The results of the surface wear resistance analysis demonstrated that a robust tribochemical film with a thickness of approximately 90 nm was formed on the rubbing surface lubricated with 0.005 wt% of BPQDs dispersion. Moreover, the film served as a direct evidence of the excellent tribological performance of BPQDs.

total 2