Chemical mechanical polishing (CMP) is an ultra-precision machining technology for hard and brittle materials. The technology has garnered significant attention from researchers worldwide owing to its low cost of processing equipment and relatively simple operational process. In the CMP process, the polishing pad plays a critical role. It not only serves as the medium for storing the polishing slurry and abrasive particles but also transfers the processing load. This paper presents a fluid-structure coupling analysis framework to elucidate the fiber structure of the polishing pad and the interaction mechanism between the polishing slurry and the workpiece during the polishing process.
An innovative fluid-structure coupling analysis framework is proposed to investigate the interaction mechanism between the fiber structure of the polishing pad, the slurry, and the workpiece during the polishing process. Through comprehensive experimental verification and numerical modeling, the polishing efficiency differences between the ordered plain weave polishing pad and the disordered nonwoven polishing pad were systematically evaluated. To meet the ultra-precision processing requirements of fused silica materials, a green and environmentally friendly polishing slurry was specially developed. The slurry consisted of cerium oxide abrasive, hydrogen peroxide, guar gum, and deionized water. The composition of the polishing slurry and the polishing process were optimized through a single-factor test. Subsequent experiments were conducted on polishing pads with different textures (ordered plain weave fabric and disordered nonwovens) using the optimized slurry and process. The experimental procedure was further optimized through a single-factor test.
The experimental results showed that the surface roughness (Sa) of the nonwoven polishing pad was as low as 0.181 nm, which was significantly better than that of the plain weave pad (0.486 nm). In addition, the thickness of the subsurface damage layer caused by the nonwoven pad was reduced to 4.14 nm, approximately one-third of that of the plain weave pad (about 12.12 nm). A comparison of the surface elements of fused silica before and after polishing revealed that the polished sample had no impurity residue on the surface after cleaning. The difference in fiber structure between the two polishing pads only affected mechanical removal during the polishing process but did not influence the chemical reaction. Furthermore, the fluid-structure coupling model analysis revealed that the nonwoven polishing pad exhibited a more uniform fiber stress distribution during polishing, with the maximum stress value being only about 0.5 MPa, considerably lower than the 6 MPa observed for the plain weave pad. In addition, the stress distribution of the slurry in the system was more random and uniform, which optimized the stress transfer and diffusion efficiency throughout the overall polishing system and promoted uniform material removal.
In conclusion, this paper highlights the advantages of the disordered nonwoven polishing system in the precision processing of fused silica from both experimental and numerical perspectives. It also provides valuable insights for the analysis, design, and manufacturing practices of complex polishing systems involving fiber aggregate polishing pads, slurry, and workpieces.