Sort:
Open Access Review Issue
What do we know about IL-6 in COVID-19 so far?
Biophysics Reports 2021, 7 (3): 193-206
Published: 07 July 2021
Downloads:4

Interleukin 6 (IL-6) is a cytokine with dual functions of pro-inflammation and anti-inflammation. It is mainly produced by mononuclear macrophages, Th2 cells, vascular endothelial cells and fibroblasts. IL-6 binds to glycoprotein 130 and one of these two receptors, membrane-bound IL-6R or soluble IL-6R, forming hexamer (IL-6/IL-6R/gp130), which then activates different signaling pathways (classical pathway, trans-signaling pathway) to exert dual immune-modulatory effects of anti-inflammation or pro-inflammation. Abnormal levels of IL-6 can cause multiple pathological reactions, including cytokine storm. Related clinical studies have found that IL-6 levels in severe COVID-19 patients were much higher than in healthy population. A large number of studies have shown that IL-6 can trigger a downstream cytokine storm in patients with COVID-19, resulting in lung damages, aggravating clinical symptoms and developing excessive inflammation and acute respiratory distress syndrome (ARDS). Monoclonal antibodies against IL-6 or IL-6R, such as tocilizumab, sarilumab, siltuximab and olokizumab may serve as therapeutic options for COVID-19 infection.

Research Article Issue
Near-infrared light-driven yolk@shell carbon@silica nanomotors for fuel-free triglyceride degradation
Nano Research 2021, 14 (3): 654-659
Published: 01 March 2021
Downloads:28

Yolk@shell mesoporous nanoparticles have received close attention due to their controllable structures and integrated functions. However, most yolk@shell nanosystems lack self-propulsion. Herein, yolk@spiky-shell structured carbon@silica nanomotors are fabricated with near-infrared (NIR) light self-thermophoretic propulsion as lipase nanocarriers for fuel-free triglyceride degradation. The light propulsion accelerates the accumulation of nanomotors on the droplet interface, and the efficient lipase loading further facilitates the rapid degradation of tributyrin droplets. By adjusting the yolk and spiky structure, the obtained semi-yolk@spiky-shell structured nanomotors exhibit the highest capacity of lipase (442 mg/g) and the highest light-driven diffusion coefficient (ca. 55% increase under 2 W/cm2 irradiation), thus improving the degradation efficiency of triglyceride (93.1% under NIR light vs. 66.7% without NIR light within 20 min). This work paves the way to rationally design yolk@shell structured nanomotors for diverse applications.

Research Article Issue
Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport
Nano Research 2018, 11 (8): 4074-4081
Published: 29 January 2018
Downloads:35

Two-dimensional (2D) ultrathin SiC has received intense attention due to its broad band gap and resistance to large mechanical deformation and external chemical corrosion. However, the synthesis and application of ultrasmall 2D SiC quantum dots (QDs) has not been explored. Herein, we synthesize a type of monolayered 2D SiC QDs with advanced photoluminescence (PL) properties via a facile hydrothermal route. Their average size and thickness can be easily adjusted by altering the reaction time. The ultrasmall 2D SiC QDs exhibit a long fluorescence lifetime of 2.59 μs due to efficient quantum confinement. The applications of SiC QDs are demonstrated through labeling A549, HeLa, and NHDF cells and delivering agents for intracellular low-abundant microRNA (miRNA) detection. This advance in preparing photoluminescent SiC QDs is of great significance for broadening their potential in biomedical and optical applications.

total 3