Sort:
Research Article Issue
Asymmetrical π back-donation of hetero-dicationic Mo4+–Mo6+ pairs for enhanced electrochemical nitrogen reduction
Nano Research 2022, 15 (4): 3010-3016
Published: 06 November 2021
Downloads:40

The breaking of nonpolar N≡N bond of dinitrogen is the biggest dilemma for electrocatalytic nitrogen reduction reaction (NRR) application, driving electron migration between catalysts and N≡N bond (termed “π back-donation” process) is crucial for attenuating interfacial energy barrier but still remains challenging. Herein, using density functional theory calculations, we revealed that constructing a unique hetero-dicationic Mo4+–Mo6+ pair could effectively activate N≡N bond with a lying-down chemisorption configuration by an asymmetrical “π back-donation” process. As a proof-of-concept demonstration, we synthesized MoO2@MoO3 heterostructure with double Mo sites (Mo4+–Mo6+), which are embedded in graphite, for electrochemical nitrogen reduction. Impressively, this hetero-dicationic Mo4+–Mo6+ pair catalysts display more excellent catalytic performance with a high NH3 yield (60.9 µg·h−1·mg−1) and Faradic efficiency (23.8%) as NRR catalysts under ambient conditions than pristine MoO2 and MoO3. Operando characterizations using synchrotron-based spectroscopic techniques identified the emergence of a key *N2Hy intermediate on Mo sites during NRR, which indicates that the Mo sites are active sites and the NRR process tends to follow an associative mechanism. This novel type of hetero-dicationic catalyst has tremendous potential as a new class of transition metal-based catalysts with promising applications in electrocatalysis and catalysts for energy conversion and storage.

Research Article Issue
Surface-adsorbed ions on TiO2 nanosheets for selective photocatalytic CO2 reduction
Nano Research 2018, 11 (6): 3362-3370
Published: 22 May 2018
Downloads:21

A method based on the adsorption of ions on the surface of two-dimensional (2D) nanosheets has been developed for photocatalytic CO2 reduction. Isolated Bi ions, confined on the surface of TiO2 nanosheets using a simple ionic adsorption method facilitate the formation of a built-in electric field that effectively promotes charge carrier separation. This leads to an improved performance of the photocatalytic CO2 reduction process with the preferred conversion to CH4. The proposed surface ion-adsorption method is expected to provide an effective approach for the design of highly efficient photocatalytic systems. These findings could be very valuable in photocatalytic CO2 reduction applications.

total 2