Publications
Sort:
Research Article Issue
Large work function shift of organic semiconductors inducing enhanced interfacial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures
Nano Research 2014, 7 (5): 679-693
Published: 27 March 2014
Downloads:15

We report on large work function shifts induced by the coverage of several organic semiconducting (OSC) films commonly used in organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) with a porphyrin aggregated layer. The insertion between the organic film and the aluminum cathode of an aggregated layer based on the meso-tetrakis(1-methylpyridinium-4-yl) porphyrin chloride (porphyrin 1), with its molecules adopting a face-to-face orientation parallel to the organic substrate, results in a significant shift of the OSC work function towards lower values due to the formation of a large interfacial dipole and induces large enhancement of either the OLED or OPV device efficiency. OLEDs based on poly[(9, 9-dioctylfluorenyl-2, 7-diyl)-co-(1, 4-benzo-2, 1′, 3-thiadiazole)] (F8BT) and incorporating the porphyrin 1 at the cathode interface exhibited current efficiency values up to 13.8 cd/A, an almost three-fold improvement over the efficiency of 4.5 cd/A of the reference device. Accordingly, OPVs based on poly(3-hexylthiophene) (P3HT), [6, 6]-phenyl-C61 butyric acid methyl ester (PC61BM) and porphyrin 1 increased their external quantum efficiencies to 4.4% relative to 2.7% for the reference device without the porphyrin layer. The incorporation of a layer based on the zinc meso-tetrakis (1-methylpyridinium-4-yl)porphyrin chloride (porphyrin 2), with its molecules adopting an edge-to-edge orientation, also introduced improvements, albeit more modest in all cases, highlighting the impact of molecular orientation.

total 1