Sort:
Research Article Issue
Multiscale engineering of molecular electrocatalysts for the rapid hydrogen evolution reaction
Nano Research 2024, 17(7): 6026-6031
Published: 13 May 2024
Abstract PDF (1.9 MB) Collect
Downloads:33

Molecular electrocatalysts have demonstrated potential for the hydrogen evolution reaction (HER) due to their well-defined structures and high intrinsic activities. Achieving rapid production of hydrogen requires molecular electrocatalysts to operate at high current densities, which still presents a challenge. In this work, we demonstrate that molecularly dispersed electrocatalysts of cobalt phthalocyanine anchored on carbon nanotubes (CoPc MDEs) are superior candidates due to the efficient charge transport between the substrate and the active site. The intrinsic activity can be enhanced by introducing functional groups on phthalocyanine. To facilitate mass transport, di(ethylene glycol) substituted CoPc molecules are further anchored on a three-dimensional self-supported electrode (CoPc-DEG MDE@CC), enabling continuous operation for 25 h at −1000 mA/cm2 in 1.0 M KOH. Our study demonstrates the potential of molecular electrocatalysts for HER and emphasizes the importance of adjusting intrinsic activity, and charge and mass transport capacity for practical molecular electrocatalysts.

Research Article Issue
Sensitively detecting antigen of SARS-CoV-2 by NIR-II fluorescent nanoparticles
Nano Research 2022, 15(8): 7313-7319
Published: 10 May 2022
Abstract PDF (6.2 MB) Collect
Downloads:81

Early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an efficient way to prevent the spread of coronavirus disease 2019 (COVID-19). Detecting SARS-CoV-2 antigen can be rapid and convenient, but it is still challenging to develop highly sensitive methods for effective diagnosis. Herein, a lateral flow assay (LFA) based on fluorescent nanoparticles emitting in the second near-infrared (NIR-II) window is developed for sensitive detection of SARS-CoV-2 antigen. Benefiting from the NIR-II fluorescence with high penetration and low autofluorescence, such NIR-II based LFA allows enhanced signal-to-background ratio, and the limit of detection is down to 0.01 ng·mL−1 of SARS-CoV-2 antigen. In the clinical swab sample tests, the NIR-II LFA outperforms the colloidal gold LFA with higher overall percent agreement with the polymerase chain reaction test. The clinical samples with low antigen concentrations (~ 0.015–~ 0.068 ng·mL−1) can be successfully detected by the NIR-II LFA, but fail for the colloidal gold LFA. The NIR-II LFA can provide a promising platform for highly sensitive, rapid, and cost-effective method for early diagnosis and mass screening of SARS-CoV-2 infection.

Research Article Issue
High brightness NIR-II nanofluorophores based on fused-ring acceptor molecules
Nano Research 2020, 13(9): 2570-2575
Published: 22 June 2020
Abstract PDF (10.2 MB) Collect
Downloads:25

It is challenging to develop molecular fluorophores in the second near-infrared (NIR-II) window with long wavelength emission and high brightness, which can improve the performance of biological imaging. Herein, we report a molecular engineering approach to afford NIR-II fluorophores with these merits based on fused-ring acceptor (FRA) molecules. Dioctyl 3,4-propylenedioxy thiophene (PDOT-C8) is utilized as the bridging donor to replace 3-ethylhexyloxy thiophene (3-EHOT), leading to more than 20 times enhancement of brightness. The nanofluorophores (NFs) based on the optimized CPTIC-4F molecule exhibit an emission peak of 1,110 nm with a fluorescence quantum yield (QY) of 0.39% (QY of IR-26 is 0.050% in dichloroethane as reference) and peak absorption coefficient of 14.5 × 104 M-1·cm-1 in aqueous solutions, which are significantly higher than those of 3-EHOT based COTIC-4F NFs. It is found that PDOT-C8 can weaken intermolecular aggregation, enhance protection of molecular backbone from water, and decrease backbone distortion, beneficial for the high brightness. Compared with indocyanine green with same injection dose, CPTIC-4F NFs show 10 times higher signal-to-background ratio for whole body vessels imaging at 1,300 nm long pass filters.

Research Article Issue
Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes
Nano Research 2019, 12(9): 2330-2334
Published: 13 June 2019
Abstract PDF (2.5 MB) Collect
Downloads:73

Metal phthalocyanines (MePcs) have been considered as promising catalysts for CO2 reduction electrocatalysis due to high turnover frequency and structural tunability. However, their performance is often limited by low current density and the performance of some systems is controversial. Here, we report a carbon nanotube (CNT) hybridization approach to study the electrocatalytic performance of MePcs (Me = Co, Fe and Mn). MePc molecules are anchored on CNTs to form the hybrid materials without noticeable molecular aggregations. The MePc/CNT hybrids show higher activities and better stabilities than their molecular counterparts. FePc/CNT is slightly less active than CoPc/CNT, but it could deliver higher Faradaic efficiencies for CO production at low overpotentials. In contrast, the catalytic performance of MePc molecules directly loaded on substrate is hindered by molecular aggregation, especially for FePc and MnPc. Our results suggest that carbon nanotube hybridization is an efficient approach to construct advanced MePc electrocatalysts and to understand their catalytic performance.

Total 4