Publications
Sort:
Research Article Issue
In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction
Nano Research 2019, 12 (7): 1605-1611
Published: 23 April 2019
Downloads:28

The suitable materials, metal nitrides, are a promising class of electrocatalyst materials for a highly efficient oxygen evolution reaction (OER) because they exhibit superior intrinsic conductivity and have higher sustainability than oxide-based materials. To our knowledge, for the first time, we report a designable synthesis of three-dimensional (3D) and mesoporous Co3N@amorphous N-doped carbon (AN-C) nanocubes (NCs) with well-controlled open-framework structures via monodispersed Co3[Co(CN)6]2 Prussian blue analogue (PBA) NC precursors using in situ nitridation and calcination processes. Co3N@AN-C NCs (2 h) demonstrate better OER activity with a remarkably low Tafel plot (69.6 mV∙dec-1), low overpotential of 280 mV at a current density of 10 mA∙cm-2. Additionally, excellent cycling stability in alkaline electrolytes was exhibited without morphological changes and voltage elevations, superior to most reported hierarchical structures of transition-metal nitride particles. The presented strategy for synergy effects of metal-organic frameworks (MOFs)-derived transition-metal nitrides-carbon hybrid nanostructures provides prospects for developing high-performance and advanced electrocatalyst materials.

total 1