Open Access Issue
Survey and Tutorial on Hybrid Human-Artificial Intelligence
Tsinghua Science and Technology 2023, 28 (3): 486-499
Published: 13 December 2022

The growing computing power, easy acquisition of large-scale data, and constantly improved algorithms have led to a new wave of artificial intelligence (AI) applications, which change the ways we live, manufacture, and do business. Along with this development, a rising concern is the relationship between AI and human intelligence, namely, whether AI systems may one day overtake, manipulate, or replace humans. In this paper, we introduce a novel concept named hybrid human-artificial intelligence (H-AI), which fuses human abilities and AI capabilities into a unified entity. It presents a challenging yet promising research direction that prompts secure and trusted AI innovations while keeping humans in the loop for effective control. We scientifically define the concept of H-AI and propose an evolution road map for the development of AI toward H-AI. We then examine the key underpinning techniques of H-AI, such as user profile modeling, cognitive computing, and human-in-the-loop machine learning. Afterward, we discuss H-AI’s potential applications in the area of smart homes, intelligent medicine, smart transportation, and smart manufacturing. Finally, we conduct a critical analysis of current challenges and open gaps in H-AI, upon which we elaborate on future research issues and directions.

Open Access Issue
Dataflow Management in the Internet of Things: Sensing, Control, and Security
Tsinghua Science and Technology 2021, 26 (6): 918-930
Published: 09 June 2021

The pervasiveness of the smart Internet of Things (IoTs) enables many electric sensors and devices to be connected and generates a large amount of dataflow. Compared with traditional big data, the streaming dataflow is faced with representative challenges, such as high speed, strong variability, rough continuity, and demanding timeliness, which pose severe tests of its efficient management. In this paper, we provide an overall review of IoT dataflow management. We first analyze the key challenges faced with IoT dataflow and initially overview the related techniques in dataflow management, spanning dataflow sensing, mining, control, security, privacy protection, etc. Then, we illustrate and compare representative tools or platforms for IoT dataflow management. In addition, promising application scenarios, such as smart cities, smart transportation, and smart manufacturing, are elaborated, which will provide significant guidance for further research. The management of IoT dataflow is also an important area, which merits in-depth discussions and further study.

total 2