Sort:
Review Article Issue
Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts
Nano Research 2022, 15 (12): 10044-10062
Published: 11 July 2022
Downloads:386

Alkyne semi-hydrogenation is extremely significant for the production of polymer-grade ethylene and lots of fine chemicals in modern industry. Many efforts had been devoted to regulate the electronic and geometric structure of active ensembles for suppressing side reactions, including over-hydrogenation and oligomerization. Several strategies, such as alloying, surface decoration, atomization of metal centers, and others, were developed to promote the selective production of target alkenes in alkyne hydrogenation. In this review, the basic principles within reaction mechanisms and catalyst optimization would be discussed in detail. And an updated perspective to the fabrication of next-generation catalysts for alkyne semi-hydrogenation is also provided.

Open Access Research Article Issue
Towards the selectivity distinction of phenol hydrogenation on noble metal catalysts
Nano Materials Science 2023, 5 (1): 91-100
Published: 19 November 2020
Downloads:2

Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry. Though a few catalysts with promising performances have been developed in recent years, the basic principle for catalyst design is still missing owing to the unclear catalytic mechanism. This work tries to unravel the mechanism of phenol hydrogenation and the reasons causing the selectivity discrepancy on noble metal catalysts under mild conditions. Results show that different reaction pathways always firstly converge to the formation of cyclohexanone under mild conditions. The selectivity discrepancy mainly depends on the activity for cyclohexanone sequential hydrogenation, in which two factors are found to be responsible, i.e. the hydrogenation energy barrier and the competitive chemisorption between phenol and cyclohexanone, if the specific co-catalyzing effect of H2O on Ru is not considered. Based on the above results, a quantitative descriptor, Eb(one/pl)/Ea, in which Ea can be further correlated to the d band center of the noble metal catalyst, is proposed by the first time to roughly evaluate and predict the selectivity to cyclohexanone for catalyst screening.

Review Article Issue
Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles
Nano Research 2019, 12 (6): 1267-1278
Published: 29 May 2019
Downloads:42

Colloidal nanoparticles with anisotropic architectures have attracted a variety of interest and attention due to different physical and chemical properties compared with the isotropic counterparts, making them promising candidates in many fundamental studies and practical applications. Particularly, carbon and silica-based anisotropic nanoparticles can be one stand out by combing both intrinsic merits of carbons and silica, such as structural stability, biocompatibility, large surface area, and ease of functionalization with the anisotropic structural complexity. In this review, we aim to provide an updated summary of the research related to the anisotropic carbon and silica-based nanostructures, covering both their synthesis and applications.

Research Article Issue
Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions
Nano Research 2017, 10 (4): 1258-1267
Published: 27 December 2016
Downloads:14

The scalable preparation of multi-functional three-dimensional (3D) carbon nanotubes and graphene (CNTs-G) hybrids via a well-controlled route is urgently required and challenging. Herein, an easily operated, oxalic acid-assisted method was developed for the in situ fabrication of a 3D lasagna-like Fe-N-doped CNTs-G framework (LMFC) from a precursor designed at the molecular level. The well-organized architecture of LMFC was constructed by multi-dimensionally interconnected graphene and CNTs which derived from porous graphene sheets, to form a fundamentally robust and hierarchical porous structure, as well as favorable conductive networks. The impressive oxygen reduction reaction (ORR) performances in both alkaline and acidic conditions helped confirm the significance of this technically favorable morphological structure. This product was also the subject of research for the exploration of decisive effects on the performance of ORR catalysts with reasonable control variables. The present work further advances the construction of novel 3D carbon architectures via practical and economic routes.

Research Article Issue
Nitrogen-doped flower-like porous carbon materials directed by in situ hydrolysed MgO: Promising support for Ru nanoparticles in catalytic hydrogenations
Nano Research 2016, 9 (10): 3129-3140
Published: 30 July 2016
Downloads:12

The development of novel, simple, and convenient techniques for the fabrication of porous carbon materials with desirable properties, such as tunable pore structures and the presence of nitrogen functionalities, from renewable and abundant biomasses is required. We herein describe an in situ directing method for the preparation of a nitrogen-doped flower-like porous carbon (NFPC) employing arbitrarily shaped MgO from bio-derived glucosamine chloride (GAH). Experimental evidence demonstrated that the structure directing effect of the Mg(OH)2 nanosheets formed in situ from MgO hydrolysis was key to this process, with the original MgO morphology being irrelevant. Furthermore, this method was applicable for a wide variety of biomass-derived carbon precursors. The resulting NFPC exhibited a high nitrogen content of ≤9 wt.%, and was employed as a support to anchor small Ru nanoparticles (average size = 2.7 nm). The resulting Ru/NFPC was highly active in heterogeneous hydrogenations of toluene and benzoic acid, which demonstrated the advantages of nitrogen doping in terms of boosting catalytic performance.

Research Article Issue
Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors
Nano Research 2016, 9 (9): 2672-2680
Published: 27 June 2016
Downloads:18

Hydrothermal carbonization (HTC) of biomass to produce one-dimensional carbon materials with hierarchical pores is of significant importance. Here, we fabricate composites of MnOx-encapsulated multiporous carbon nanofibers (M-MCNFs) from naturally available carbohydrates through a dopamine-assisted HTC/ templating process. The introduction of dopamine aids in the formation of the morphology of carbon nanofibers (CNFs) by enhancing the interactions between the hard-templates and carbohydrates. The chosen cryptomelane hard-templates, which are superior to traditional hard-templates, are converted into Mn3O4 nanoparticles embedded in multiporous CNFs (MCNFs), eliminating the need for tedious post deposition procedures to introduce redox active sites. Hence, the obtained hybrids with large surface areas, hierarchical pores, and unique structures show great potential in supercapacitors. This economic and sustainable strategy paves a new way for synthesizing MCNFs and metal oxide-encapsulated MCNFs composites from biomass.

Research Article Issue
Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass
Nano Research 2014, 7 (12): 1809-1819
Published: 04 September 2014
Downloads:19

Encompassing ecological and economic concerns, the utilization of biomass to produce carbonaceous materials has attracted intensive research and industrial interest. Using nitrogen containing precursors could realize an in situ and homogeneous incorporation of nitrogen into the carbonaceous materials with a controlled process. Herein, N-doped hollow core-disordered mesoporous shell carbonaceous nanospheres (HCDMSs) were synthesized from glucosamine hydrochloride (GAH), an applicable carbohydrate-based derivative. The obtained HCDMSs possessed controlled size (~450-50 nm) and shell thickness (~70-10 nm), suitable nitrogen contents (~6.7-4.4 wt.%), and Brunauer-Emmett-Teller (BET) surface areas up to 770 m2·g–1. These materials show excellent electrocatalytic activity as a metal-free catalyst for the oxygen reduction reaction (ORR) in both alkaline and acidic media. Specifically, the prepared HCDMS-1 exhibits a high diffusion-limited current, and superior durability and better immunity towards methanol crossover and CO poisoning for ORR in alkaline solution than a commercial 20 wt.% Pt/C catalyst.

total 7