Sort:
Research Article Issue
Curved carbon photo-oxygenation catalysts for the suppression and nanoscopic imaging of β-amyloid peptides fibrillation
Nano Research 2022, 15 (4): 3387-3397
Published: 06 November 2021
Downloads:51

The progression of Alzheimer’s disease (AD) is characterized with the deposition and aggregation of β-amyloid (Aβ). Visualizing Aβ aggregates at high spatial resolution is beneficial for AD diagnosis and treatment. Herein, we designed a new molecule by conjugating corannulene (Cor) with rhodamine B isothiocyanate (Rhb), namely Cor-Rhb, for the nanoscopic imaging and modulating Aβ peptide fibrillation. The low duty cycle, high photon output and sufficient switching cycles enable Cor-Rhb suitable for localization-based nanoscopic fluorescence imaging. We find that Cor-Rhb can inhibit Aβ peptides fibrillization and interact directly with mature fibrils, triggering their disaggregation under light illumination. Noticeably reduced Aβ-mediated cytotoxicity after the addition of Cor-Rhb is also confirmed. These explorations suggest that Cor-Rhb displays great potential as a multifunctional therapeutic agent against amyloid-related diseases, and may largely facilitate a variety of super-resolution based biological applications.

Research Article Issue
Blinking CsPbBr3 perovskite nanocrystals for the nanoscopic imaging of electrospun nanofibers
Nano Research 2021, 14 (5): 1397-1404
Published: 01 December 2020
Downloads:29

Blinking fluorophore perovskite nanocrystals (NCs) were employed to image the fine structure of the polystyrene (PS) electrospun fibers. The conditions of CsPbBr3 NCs embedded and dispersed into PS were investigated and optimized. The stochastic optical reconstruction microscopy is employed to visualize the fine structure of the resulted CsPbBr3@PS electrospun fibers at sub-diffraction limit. The determined resolution in the reconstructed nanoscopic image is around 25.5 nm, which is much narrower than that of conventional fluorescence image. The complex reticulation and multicompartment in bead sub-diffraction-limited structures of CsPbBr3@PS electrospun fibers were successfully mapped with the help of the stochastic blinking properties of CsPbBr3 NCs. This work demonstrated the potential applications of CsPbBr3 perovskite NCs in super-resolution fluorescence imaging to reconstruct the sub-diffraction-limited features of polymeric material.

total 2