Sort:
Open Access Topical Review Issue
Sub-10 nm fabrication: methods and applications
International Journal of Extreme Manufacturing 2021, 3 (3): 032002
Published: 01 July 2021
Downloads:7

Reliable fabrication of micro/nanostructures with sub-10 nm features is of great significance for advancing nanoscience and nanotechnology. While the capability of current complementary metal-oxide semiconductor (CMOS) chip manufacturing can produce structures on the sub-10 nm scale, many emerging applications, such as nano-optics, biosensing, and quantum devices, also require ultrasmall features down to single digital nanometers. In these emerging applications, CMOS-based manufacturing methods are currently not feasible or appropriate due to the considerations of usage cost, material compatibility, and exotic features. Therefore, several specific methods have been developed in the past decades for different applications. In this review, we attempt to give a systematic summary on sub-10 nm fabrication methods and their related applications. In the first and second parts, we give a brief introduction of the background of this research topic and explain why sub-10 nm fabrication is interesting from both scientific and technological perspectives. In the third part, we comprehensively summarize the fabrication methods and classify them into three main approaches, including lithographic, mechanics-enabled, and post-trimming processes. The fourth part discusses the applications of these processes in quantum devices, nano-optics, and high-performance sensing. Finally, a perspective is given to discuss the challenges and opportunities associated with this research topic.

Research Article Issue
Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells
Nano Research 2021, 14 (5): 1355-1363
Published: 05 January 2021
Downloads:154

Despite great progress of lithium-sulfur (Li-S) battery performance at the laboratory-level, both key parameters and challenges at cell scales to achieve practical high energy density require high-sulfur-loading cathodes and lean electrolytes. Herein, a novel carbon foam integrated by hollow carbon bubble nanoreactors with ultrahigh pore volume of 6.9 cm3·g-1 is meticulously designed for ultrahigh sulfur content up to 96 wt.%. Tailoring polysulfide trapping and ion/electron transport kinetics during the charge-discharge process can be achieved by adjusting the wall thickness of hollow carbon bubbles. And a further in-depth understanding of electrochemical reaction mechanism for the cathode is impelled by the in-situ Raman spectroscopy. As a result, the as-prepared cathode delivers high specific capacitances of 1,269 and 695 mAh·g-1 at 0.1 and 5 C, respectively. Furthermore, Li-S pouch cells with high areal sulfur loading of 6.9 mg·cm-2 yield exceptional practical energy density of 382 Wh·kg-1 under lean electrolyte of 3.5 μL·mg-1, which demonstrates the great potential for realistic high-energy Li-S batteries.

Open Access Topical Review Issue
Emerging miniaturized energy storage devices for microsystem applications: from design to integration
International Journal of Extreme Manufacturing 2020, 2 (4): 042001
Published: 13 October 2020
Downloads:6

The rapid progress of micro/nanoelectronic systems and miniaturized portable devices has tremendously increased the urgent demands for miniaturized and integrated power supplies. Miniaturized energy storage devices (MESDs), with their excellent properties and additional intelligent functions, are considered to be the preferable energy supplies for uninterrupted powering of microsystems. In this review, we aim to provide a comprehensive overview of the background, fundamentals, device configurations, manufacturing processes, and typical applications of MESDs, including their recent advances. Particular attention is paid to advanced device configurations, such as two-dimensional (2D) stacked, 2D planar interdigital, 2D arbitrary-shaped, three-dimensional planar, and wire-shaped structures, and their corresponding manufacturing strategies, such as printing, scribing, and masking techniques. Additionally, recent developments in MESDs, including microbatteries and microsupercapacitors, as well as microhybrid metal ion capacitors, are systematically summarized. A series of on-chip microsystems, created by integrating functional MESDs, are also highlighted. Finally, the remaining challenges and future research scope on MESDs are discussed.

total 3