Sort:
Communication Issue
Boosting oxygen reduction in acidic media through integration of Pt-Co alloy effect and strong interaction with carbon defects
Nano Research 2024, 17(9): 7900-7908
Published: 02 July 2024
Abstract PDF (4.5 MB) Collect
Downloads:235

Optimization of Pt atom utilization efficiency is critical for the development of proton-exchange-membrane fuel cells. Here we aim to develop an efficient oxygen reduction reaction (ORR) catalyst with a low Pt content through the concurrent modification of Pt-Co alloy catalysts and carbon substrate. In the present study, ultrafine Pt-Co alloy nanoparticles are successfully synthesized and stabilized by topological carbon defects via adopting the ammonia thermal treatment. Despite the low Pt loading, the obtained catalyst exhibits an impressive half-wave potential of 0.926 V versus the reversible hydrogen electrode in 0.1 M HClO4 electrolyte. Furthermore, the durability testing using the timed-current method demonstrates a tiny loss of only 3.6% after 12 h. Both experimental results and theoretical calculations demonstrate that topological carbon defects significantly enhance the charge transfer processes at the alloy/carbon interface, contributing to the strong electronic metal-support interactions between the Pt-Co alloy nanoparticles and topological carbon defects. These interactions, along with the alloy effect, play a crucial role in promoting the ORR performance in acidic media.

Research Article Issue
Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation
Nano Research 2021, 14(5): 1405-1412
Published: 15 November 2020
Abstract PDF (16.6 MB) Collect
Downloads:27

The urea oxidation reaction has attracted increasing attention. Here, porous rod-like Ni2P/Ni assemblies, which consist of numerous nanoparticle subunits with matching interfaces at the nanoscale have been synthesized via a simple phosphating approach. Density functional theory calculations and density of states indicate that porous rod-like Ni2P/Ni assemblies can significantly enhance the activity of chemical bonds and the conductivity compared with NiO/Ni toward the urea oxidation reaction. The optimal catalyst of Ni2P/Ni can deliver a low overpotential of 50 mV at 10 mA·cm-2 and Tafel slope of 87.6 mV·dec-1 in urea oxidation reaction. Moreover, the constructed electrolytic cell exhibits a current density of 10 mA·cm-2 at a cell voltage of 1.47 V and an outstanding durability in the two-electrode system. This work has provided a new possibility to fabricate metal phosphides-metal assemblies with advanced performance.

Research Article Issue
Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2
Nano Research 2020, 13(3): 729-735
Published: 22 February 2020
Abstract PDF (9.8 MB) Collect
Downloads:42

Developing efficient carbon-based metal-free electrocatalysts can bridge the gap between laboratory studies and practical applications of CO2 reduction. However, along with the ambiguous understanding of the active sites in carbon-based electrocatalysts, carbon-based electrocatalysts with high selectivity and satisfactory stability for electroreduction of CO2 remain rare. Here, using the nitrogen rich silk cocoon as a precursor, carbon-based electrocatalysts with intrinsic defects can be prepared for efficient and long-term electroreduction of CO2 by a simple two-step carbonization. The obtained electrocatalyst can catalyze CO2 reduction to CO with a Faradaic efficiency of ~ 89% and maintain good selectivity for about 10 days. Particularly, our experimental studies suggest that in-plane defects are the main active sites on which the rate-determining step for CO2 reduction should be the direct electron transfer to CO2 but not the proton-coupled electron transfer. Further theoretical calculations consistently demonstrate that the intrinsic defects in carbon matrix, particularly the pentagon-containing defects, act as main active sites to accelerate the direct electron transfer for CO2 reduction. In addition, our synthetic approach can convert egg white into efficient catalysts for CO2 electroreduction. These findings, providing new insights into the biomass-derived catalysts, should pave the way for fabricating efficient and stable carbon-based electrocatalysts with catalytically active defects by using naturally abundant precursors.

Total 3