Publications
Sort:
Review Article Issue
From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering
Nano Research 2020, 13 (5): 1253-1267
Published: 26 February 2020
Downloads:29

Effective strategies in cardiac tissue engineering require matrices that recapitulate the mechanical, topographic and electrical cues present in the native extracellular matrix. In this review, we discuss recent efforts in materials science and nanotechnology to achieve functional three-dimensional (3D) scaffolds that modulate and monitor cardiac tissue function. We consider key design considerations, including choice of biopolymer matrix, cell sources, and delivery methods for eventual therapies. We then discuss how solid-state nanomaterials may be integrated within these systems to provide unique electrical and nanotopographic cues that improve electromechanical synchrony. We describe how these approaches may be extended to complex, spatially heterogeneous constructs using 3D bioprinting techniques. Finally, we describe how scaffold materials may be augmented with bioelectronic components to achieve hybrid myocardium that monitors or controls electrophysiological activity. Collectively, these approaches provide a framework for achieving cardiac tissues with tunable, rationally-designed functionalities. We discuss future prospects and remaining challenges for clinical translation.

Review Article Issue
Nanobiotechnology: 1D nanomaterial building blocks for cellular interfaces and hybrid tissues
Nano Research 2018, 11 (10): 5372-5399
Published: 13 September 2018
Downloads:20

Solid-state nanomaterials exhibit complementary interactions with biological systems because of their biologically-relevant size scales and rationally tunable electrical, chemical and mechanical properties. In this review, we focus specifically on one-dimensional (1D) nanomaterials such as silicon or gold nanowires or carbon nanotubes. We discuss the nature of the nanomaterial–cell interface, and how that interface may be engineered to enhance or modulate cellular function. We then describe how those unique interfaces may be exploited in three-dimensional (3D) tissue culture to recapitulate the extracellular matrix and promote or complement morphogenesis. Finally, we describe how 1D nanomaterials may be elucidated as nanoelectronic devices that monitor the chemical or electrical environment of cells or tissue with exquisite spatial and temporal resolution. We discuss prospects for entirely new classes of engineered, hybrid tissues with rationally-designed biological function and two-way, closed-loop electronic communication.

total 2