Sort:
Research Article Issue
Recycle spent graphite to defect-engineered, high-power graphite anode
Nano Research 2023, 16 (4): 4240-4245
Published: 13 December 2022
Downloads:92

Graphite is a dominant anode material for lithium-ion batteries (LIBs) due to its outstanding electrochemical performance. However, slow lithium ion (Li+) kinetics of graphite anode restricts its further application. Herein, we report that high-temperature shock (HTS) can drive spent graphite (SG) into defect-rich recycled graphite (DRG) which is ideal for high-rate anode. The DRG exhibits the charging specific capacity of 323 mAh/g at a high current density of 2 C, which outperforms commercial graphite (CG, 120 mAh/g). The eminent electrochemical performance of DRG can be attributed to the recovery of layered structure and partial remaining defects of SG during ultrafast heating and cooling process, which can effectively reduce total strain energy, accelerate the phase transition in thermodynamics and improve the Li+ diffusion. This study provides a facile strategy to guide the re-graphitization of SG and design high performance battery electrode materials by defect engineering from the atomic level.

Research Article Issue
Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation
Nano Research 2021, 14 (4): 1149-1155
Published: 09 November 2020
Downloads:28

Development of efficient non-precious catalysts for seawater electrolysis is of great significance but challenging due to the sluggish kinetics of oxygen evolution reaction (OER) and the impairment of chlorine electrochemistry at anode. Herein, we report a heterostructure of Ni3S2 nanoarray with secondary Fe-Ni(OH)2 lamellar edges that exposes abundant active sites towards seawater oxidation. The resultant Fe-Ni(OH)2/Ni3S2 nanoarray works directly as a free-standing anodic electrode in alkaline artificial seawater. It only requires an overpotential of 269 mV to afford a current density of 10 mA·cm−2 and the Tafel slope is as low as 46 mV·dec−1. The 27-hour chronopotentiometry operated at high current density of 100 mA·cm−2 shows negligible deterioration, suggesting good stability of the Fe-Ni(OH)2/Ni3S2@NF electrode. Faraday efficiency for oxygen evolution is up to ~ 95%, revealing decent selectivity of the catalyst in saline water. Such desirable catalytic performance could be benefitted from the introduction of Fe activator and the heterostructure that offers massive active and selective sites. The density functional theory (DFT) calculations indicate that the OER has lower theoretical overpotential than Cl2 evolution reaction in Fe sites, which is contrary to that of Ni sites. The experimental and theoretical study provides a strong support for the rational design of high-performance Fe-based electrodes for industrial seawater electrolysis.

total 2