Sort:
Research Article Issue
Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 asappropriate platform for visible-light-driven photocatalytic solar energy conversion
Nano Research 2019, 12 (8): 1931-1936
Published: 26 June 2019
Downloads:50

Graphitic carbon nitride (g-C3N4) has become an attractive visible-light-responsive photocatalyst because of its semiconductor polymer compositions and easy-modulated band structure. However, the bulk g-C3N4 photocatalyst has the low separation efficiency of photogenerated carriers and unsatisfied surface catalytic performance, which leads to poor photocatalytic performance. As for this, MgTi2O5 with high chemical stability, wide band gap and negative conduction band was used as a suitable platform for coupling with g-C3N4 to enhance charge separation and promoted the photoactivity. Different from common approaches, here, we propose an innovative method to construct g-C3N4/MgTi2O5 nanocomposites featuring "0 + 1 > 1" magnification effect to improve g-C3N4 photocatalytic performance under visible light irradiation. Additionally, compositing metal oxides of MgTi2O5 with g-C3N4 has proven to be a proper strategy to accelerate surface catalytic reactions in g-C3N4, and the photoinduced carriers were modulated to maintain thermodynamic equilibrium, which convincingly promotes the photocatalytic activity. The photocatalytic performance of the nanocomposites was measured by hydrogen production and CO2 reduction under visible light. The developed g-C3N4/MgTi2O5 nanocomposites with a 5 wt.% MgTi2O5 exhibits the highest H2 and CO yield under visible light and excellent stability compare to the other MgTi2O5 contents in composites. According to surface photo-voltage spectra, electrochemical CO2 reduction, photoluminescence, etc. The superior performance can be related to an enhanced electron lifetime, the promoted charge transfer and the increased electronic separation property of g-C3N4. Our work provides an approach to overcome the defect of pure g-C3N4, which accesses to composite with the second component matched well.

Research Article Issue
One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells
Nano Research 2018, 11 (3): 1322-1330
Published: 02 February 2018
Downloads:34

One-dimension carbon self-doping g-C3N4 nanotubes (CNT) with abundant communicating pores were synthesized via thermal polymerization of saturated or supersaturated urea inside the framework of a melamine sponge for the first time. A ~16% improvement in photoelectric conversion efficiency (η) is observed for the devices fabricated with a binary hybrid composite of the obtained CNT and TiO2 compared to pure TiO2 device. The result of EIS analysis reveals that the interfacial resistance of the TiO2-dye|I3-/I- electrolyte interface of TiO2-CNT composite cell is much lower than that of pure TiO2 cell. In addition, the TiO2-CNT composite cell exhibits longer electron recombination time, shorter electron transport time, and higher charge collection efficiency than those of pure TiO2 cell. Systematic investigations reveal that the CNT boosts the light harvesting ability of the photovoltaic devices by enhancing not only the visible light absorption but also the charge separation and transfer.

Research Article Issue
Prolonged lifetime and enhanced separation of photo­generated charges of nanosized α-Fe2O3 by coupling SnO2 for efficient visible-light photocatalysis to convert CO2 and degrade acetaldehyde
Nano Research 2017, 10 (7): 2321-2331
Published: 01 March 2017
Downloads:11

To develop efficient visible-light photocatalysis on α-Fe2O3, it is highly desirable to promote visible-light-excited high-energy-level electron transfer to a proper energy platform thermodynamically. Herein, based on the transient-state surface photovoltage responses and the atmosphere-controlled steady-state surface photovoltage spectra, it is demonstrated that the lifetime and separation of photogenerated charges of nanosized α-Fe2O3 are increased after coupling a proper amount of nanocrystalline SnO2. This naturally leads to greatly improved photocatalytic activities for CO2 reduction and acetaldehyde degradation. It is suggested that the enhanced charge separation results from the electron transfer from α-Fe2O3 to SnO2, which acts as a proper energy platform. Based on the photocurrent action spectra, it is confirmed that the coupled SnO2 exhibits longer visible-light threshold wavelength (~590 nm) compared with the coupled TiO2 (~550 nm), indicating that the energy platform introduced by SnO2 would accept more photogenerated electrons from α-Fe2O3. Moreover, electrochemical reduction experiments proved that the coupled SnO2 possesses better catalytic ability for reducing CO2 and O2. These are well responsible for the much efficient photocatalysis on SnO2-coupled α-Fe2O3.

Research Article Issue
MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions with high photocatalytic hydrogen production activity
Nano Research 2017, 10 (1): 295-304
Published: 20 October 2016
Downloads:24

An effective photocatalytic hydrogen production catalyst comprising MgTiO3/ MgTi2O5/TiO2 heterogeneous belt-junctions was prepared using magnesium ions by a thermally driven doping method. The tri-phase heterogeneous junction was confirmed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). The as-prepared MgTiO3/MgTi2O5/ TiO2 heterojunctions exhibited a very high photocatalytic hydrogen production activity (356.1 mol∙g0.1gcat∙h−1) and an apparent quantum efficiency (50.69% at 365 nm) that is about twice of that of bare TiO2 nanobelts (189.4 mol∙g0.1gcat∙h−1). Linear sweep voltage and transient photocurrent characterization as well as analysis of the electrochemical impedance spectra and Mott-Schottky plots revealed that the high photocatalytic performance is caused by the one-dimensional structure, which imparts excellent charge transportation characteristic, and the MgTiO3/MgTi2O5/TiO2 tri-phase heterojunction, which effectively drives the charge separation through the inherent electric field. This titanate-based tri-phase heterogeneous junction photocatalyst further enriches the catalyst system for photocatalytic hydrogen production.

total 4