Sort:
Open Access Research paper Issue
Comprehensively improved energy storage and DC-bias properties in Bi0.5Na0.5TiO3-NaNbO3 based relaxor antiferroelectric
Journal of Materiomics 2025, 11(3)
Published: 25 July 2024
Abstract Collect

Dielectric pulse capacitors are of great concerns due to the fast charge/discharge rate and high-power density over traditional counterparts. However, energy-storage capacitor in power converters typically works at a large DC-biased voltage, where the energy-storge density (Wdis) and efficiency (η) will dramatically decay, thus fatally blocks its further applications. Herein, we proposed a synergistic strategy to achieve a comprehensively improved energy storage property in Bi1-xNaxTiO3-NaNbO3 based ceramics. Configuration of chemical composition optimization, A-site vacancy engineering, grain size refinement, and sample thickness reduction were designed in the ceramics. Finally, an optimum Wdis of 8.04 J/cm3 and an ultrahigh η of 85% was achieved for the 0.50 (0.95Bi0.52Na0.44TiO3-0.05SrZrO3)-0.50NaNbO3 composite under a breakdown strength of 630 kV/cm, along with a stable DC-biased capacitance retention. Additionally, a superior performance stability was affirmed in a wide temperature/frequency range (25–150 ℃ and 1–100 Hz, respectively). It also exhibits an impressive ability in fatigue resistance after being subjected to up to 106 cycles, which enable it to be a suitable candidate for high energy density storage devices.

Open Access Research Article Issue
Ultrasound-driven BaTiO3 nanorobots patching immunologic barrier to cure chronic rheumatoid arthritis
Journal of Advanced Ceramics 2023, 12(5): 1105-1117
Published: 09 March 2023
Abstract PDF (1.7 MB) Collect
Downloads:766

The disruption and reconstruction of the TREM2+ tissue resident macrophage (TRM) barrier on the surface of synovial lining play a key role in the activation and "remission" of rheumatoid arthritis (RA), which engender the prediction of this immunologic barrier as a potential driver for the achievement of "cure" in RA. However, strategies to promote the reconstruction of this barrier have not been reported, and the effect of patching this barrier remains unidentified. On the other hand, appropriate piezoelectric stimulation can reprogram macrophages, which has never been exerted on this barrier TRM yet. Herein, we design piezoelectric tetragonal BaTiO3 (BTO) ultrasound-driven nanorobots (USNRs) by the solvothermal synthesis method, which demonstrates satisfactory electro-mechanical conversion effects, paving the way to generate controllable electrical stimulation under ultrasound to reprogram the barrier TRM by minimally invasive injection into joint cavity. It is demonstrated that the immunologic barrier could be patched by this USNR effectively, thereby eliminating the hyperplasia of vessels and nerves (HVN) and synovitis. Additionally, TREM2 deficiency serum-transfected arthritis (STA) mice models are applied and proved the indispensable role of TREM2 in RA curing mediated by USNR. In all, our work is an interesting and important exploration to expand the classical tetragonal BTO nanoparticles in the treatment of autoimmune diseases, providing a new idea and direction for the biomedical application of piezoelectric ceramics.

Open Access Review Issue
New progress in development of ferroelectric and piezoelectric nanoceramics
Journal of Advanced Ceramics 2015, 4(1): 1-21
Published: 31 January 2015
Abstract PDF (4.6 MB) Collect
Downloads:66

There has been great progress in the last decade in the synthesis of nanopowders with highly controlled size and size distribution. Meanwhile, the development of an unconventional pressureless two-step sintering strategy enabling densification without grain growth provides a novel technology suitable for commercial production of nanograin ceramics. The particular interest concerning bulk dense nanograin ceramics is the manifestation of ferroelectricity, which remains a fundamental issue to be understood and exploited. Combining the best powder synthesis and optimized two-step sintering, high-density barium titanate (BT) and related nanograin ceramics have been fabricated to allow for a detailed determination of the size effect on nanometer-scale ferroelectricity and piezoelectricity of fundamental and industrial interest. These include dense ceramics of undoped BT with an average grain size down to 5 nm, and of (1−x)BiScO3xPbTiO3 (BSPT) solid solutions with an average grain size down to 10 nm. Here we review the fabrication methods of high-density BT and BSPT nanoceramics and the major findings of the size effect on their microstructure, phase transition and electrical properties. Robust ferroelectricity is demonstrated for the first time in 5 nm BT nanoceramics, while strong local piezoelectricity is present in 10 nm BSPT nanoceramics.

Total 3