Sort:
Open Access Issue
Entropy-Based Global and Local Weight Adaptive Image Segmentation Models
Tsinghua Science and Technology 2020, 25 (1): 149-160
Published: 22 July 2019
Abstract PDF (1.5 MB) Collect
Downloads:72

This paper proposes a parameter adaptive hybrid model for image segmentation. The hybrid model combines the global and local information in an image, and provides an automated solution for adjusting the selection of the two weight parameters. Firstly, it combines an improved local model with the global Chan-Vese (CV) model , while the image’s local entropy is used to establish the index for measuring the image’s gray-level information. Parameter adjustment is then performed by the real-time acquisition of the ratio of the different functional energy in a self-adapting model responsive to gray-scale distribution in the image segmentation process. Compared with the traditional linear adjustment model, which is based on trial-and-error, this paper presents a more quantitative and intelligent method for achieving the dynamic nonlinear adjustment of global and local terms. Experiments show that the proposed model achieves fast and accurate segmentation for different types of noisy and non-uniform grayscale images and noise images. Moreover, the method demonstrates high stability and is insensitive to the position of the initial contour.

Open Access Issue
Novel Model Using Kernel Function and Local Intensity Information for Noise Image Segmentation
Tsinghua Science and Technology 2018, 23 (3): 303-314
Published: 02 July 2018
Abstract PDF (7.9 MB) Collect
Downloads:36

It remains a challenging task to segment images that are distorted by noise and intensity inhomogeneity. To overcome these problems, in this paper, we present a novel region-based active contour model based on local intensity information and a kernel metric. By introducing intensity information about the local region, the proposed model can accurately segment images with intensity inhomogeneity. To enhance the model’s robustness to noise and outliers, we introduce a kernel metric as its objective functional. To more accurately detect boundaries, we apply convex optimization to this new model, which uses a weighted total-variation norm given by an edge indicator function. Lastly, we use the split Bregman iteration method to obtain the numerical solution. We conducted an extensive series of experiments on both synthetic and real images to evaluate our proposed method, and the results demonstrate significant improvements in terms of efficiency and accuracy, compared with the performance of currently popular methods.

Total 2