Sort:
Open Access Issue
Efficient Feature Extraction Using Apache Spark for Network Behavior Anomaly Detection
Tsinghua Science and Technology 2018, 23(5): 561-573
Published: 17 September 2018
Abstract PDF (33.4 MB) Collect
Downloads:41

Extracting and analyzing network traffic feature is fundamental in the design and implementation of network behavior anomaly detection methods. The traditional network traffic feature method focuses on the statistical features of traffic volume. However, this approach is not sufficient to reflect the communication pattern features. A different approach is required to detect anomalous behaviors that do not exhibit traffic volume changes, such as low-intensity anomalous behaviors caused by Denial of Service/Distributed Denial of Service (DoS/DDoS) attacks, Internet worms and scanning, and BotNets. We propose an efficient traffic feature extraction architecture based on our proposed approach, which combines the benefit of traffic volume features and network communication pattern features. This method can detect low-intensity anomalous network behaviors and conventional traffic volume anomalies. We implemented our approach on Spark Streaming and validated our feature set using labelled real-world dataset collected from the Sichuan University campus network. Our results demonstrate that the traffic feature extraction approach is efficient in detecting both traffic variations and communication structure changes. Based on our evaluation of the MIT-DRAPA dataset, the same detection approach utilizes traffic volume features with detection precision of 82.3% and communication pattern features with detection precision of 89.9%. Our proposed feature set improves precision by 94%.

Open Access Issue
An Anomalous Behavior Detection Model in Cloud Computing
Tsinghua Science and Technology 2016, 21(3): 322-332
Published: 13 June 2016
Abstract PDF (1.5 MB) Collect
Downloads:37

This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (IaaS). The security of such VMs is critical to IaaS security. Many studies have been done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate. More and more studies show that communication among internal nodes exhibits complex patterns. Communication among VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed—leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks (SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. The experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model.

Total 2