Sort:
Open Access Issue
SGNR: A Social Graph Neural Network Based Interactive Recommendation Scheme for E-Commerce
Tsinghua Science and Technology 2023, 28 (4): 786-798
Published: 06 January 2023
Downloads:63

Interactive Recommendation (IR) formulates the recommendation as a multi-step decision-making process which can actively utilize the individuals’ feedback in multiple steps and optimize the long-term user benefit of recommendation. Deep Reinforcement Learning (DRL) has witnessed great application in IR for e-commerce. However, user cold-start problem impairs the learning process of the DRL-based recommendation scheme. Moreover, most existing DRL-based recommendations ignore user relationships or only consider the single-hop social relationships, which cannot fully utilize the social network. The fact that those schemes can not capture the multiple-hop social relationships among users in IR will result in a sub-optimal recommendation. To address the above issues, this paper proposes a Social Graph Neural network-based interactive Recommendation scheme (SGNR), which is a multiple-hop social relationships enhanced DRL framework. Within this framework, the multiple-hop social relationships among users are extracted from the social network via the graph neural network which can sufficiently take advantage of the social network to provide more personalized recommendations and effectively alleviate the user cold-start problem. The experimental results on two real-world datasets demonstrate that the proposed SGNR outperforms other state-of-the-art DRL-based methods that fail to consider social relationships or only consider single-hop social relationships.

Open Access Issue
CAN: Effective Cross Features by Global Attention Mechanism and Neural Network for Ad Click Prediction
Tsinghua Science and Technology 2022, 27 (1): 186-195
Published: 17 August 2021
Downloads:44

Online advertising click-through rate (CTR) prediction is aimed at predicting the probability of a user clicking an ad, and it has undergone considerable development in recent years. One of the hot topics in this area is the construction of feature interactions to facilitate accurate prediction. Factorization machine provides second-order feature interactions by linearly multiplying hidden feature factors. However, real-world data present a complex and nonlinear structure. Hence, second-order feature interactions are unable to represent cross information adequately. This drawback has been addressed using deep neural networks (DNNs), which enable high-order nonlinear feature interactions. However, DNN-based feature interactions cannot easily optimize deep structures because of the absence of cross information in the original features. In this study, we propose an effective CTR prediction algorithm called CAN, which explicitly exploits the benefits of attention mechanisms and DNN models. The attention mechanism is used to provide rich and expressive low-order feature interactions and facilitate the optimization of DNN-based predictors that implicitly incorporate high-order nonlinear feature interactions. The experiments using two real datasets demonstrate that our proposed CAN model performs better than other cross feature- and DNN-based predictors.

Open Access Issue
An Integrated Incentive Framework for Mobile Crowdsourced Sensing
Tsinghua Science and Technology 2016, 21 (2): 146-156
Published: 31 March 2016
Downloads:16

Currently, mobile devices (e.g., smartphones) are equipped with multiple wireless interfaces and rich built-in functional sensors that possess powerful computation and communication capabilities, and enable numerous Mobile Crowdsourced Sensing (MCS) applications. Generally, an MCS system is composed of three components: a publisher of sensing tasks, crowd participants who complete the crowdsourced tasks for some kinds of rewards, and the crowdsourcing platform that facilitates the interaction between publishers and crowd participants. Incentives are a fundamental issue in MCS. This paper proposes an integrated incentive framework for MCS, which appropriately utilizes three widely used incentive methods: reverse auction, gamification, and reputation updating. Firstly, a reverse-auction-based two-round participant selection mechanism is proposed to incentivize crowds to actively participate and provide high-quality sensing data. Secondly, in order to avoid untruthful publisher feedback about sensing-data quality, a gamification-based verification mechanism is designed to evaluate the truthfulness of the publisher’s feedback. Finally, the platform updates the reputation of both participants and publishers based on their corresponding behaviors. This integrated incentive mechanism can motivate participants to provide high-quality sensed contents, stimulate publishers to give truthful feedback, and make the platform profitable.

total 3