Sort:
Open Access Issue
Literature Review on Wireless Sensing—Wi-Fi Signal-Based Recognition of Human Activities
Tsinghua Science and Technology 2018, 23 (2): 203-222
Published: 02 April 2018
Downloads:83

With the rapid development and wide deployment of wireless technology, Wi-Fi signals have no longer been confined to the Internet as a communication medium. Wi-Fi signals will be modulated again by human actions when propagating indoors, carrying rich human body state information. Therefore, a novel wireless sensing technology is gradually emerging that can realize gesture recognition, human daily activity detection, identification, indoor localization and human body tracking, vital signs detection, imaging, and emotional recognition by extracting effective feature information about human actions from Wi-Fi signals. Researchers mainly use channel state information or frequency modulated carrier wave in their current implementation schemes of wireless sensing technology, called “Walls have eyes”, and these schemes cover radio-frequency technology, signal processing technology, and machine learning. These available wireless sensing systems can be used in many applications such as smart home, medical health care, search-and-rescue, security, and with the high precision and passively device-free through-wall detection function. This paper elaborates the research actuality and summarizes each system structure and the basic principles of various wireless sensing applications in detail. Meanwhile, two popular implementation schemes are analyzed. In addition, the future diversely application prospects of wireless sensing systems are presented.

Open Access Issue
Lightweight Trusted Security for Emergency Communication Networks of Small Groups
Tsinghua Science and Technology 2018, 23 (2): 195-202
Published: 02 April 2018
Downloads:18

Public communication infrastructures are susceptible to disasters. Thus, the Emergency Communication Networks (ECNs) of small groups are necessary to maintain real-time communication during disasters. Given that ECNs are self-built by users, the unavailability of infrastructures and the openness of wireless channels render them insecure. ECN security, however, is a rarely studied issue despite of its importance. Here, we propose a security scheme for the ECNs of small groups. Our scheme is based on the optimized Byzantine Generals’ Problem combined with the analysis of trusted security problems in ECNs. Applying the Byzantine Generals’ Problem to ECNs is a novel approach to realize two new functions, debugging and error correction, for ensuring system consistency and accuracy. Given the limitation of terminal devices, the lightweight fast ECDSA algorithm is introduced to guarantee the integrity and security of communication and the efficiency of the network. We implement a simulation to verify the feasibility of the algorithm after theoretical optimization.

Open Access Issue
Evolutionary Cryptography Theory-Based Generating Method for Secure ECs
Tsinghua Science and Technology 2017, 22 (5): 499-510
Published: 11 September 2017
Downloads:28

Ant Colony Optimization (ACO) has the character of positive feedback, distributed searching, and greedy searching. It is applicable to optimization grouping problems. Traditional cryptographic research is mainly based on pure mathematical methods which have complicated theories and algorithm. It seems that there is no relationship between cryptography and ACO. Actually, some problems in cryptography are due to optimization grouping problems that could be improved using an evolutionary algorithm. Therefore, this paper presents a new method of solving secure curve selection problems using ACO. We improved Complex Multiplication (CM) by combining Evolutionary Cryptography Theory with Weber polynomial solutions. We found that ACO makes full use of valid information generated from factorization and allocates computing resource reasonably. It greatly increases the performance of Weber polynomial solutions. Compared with traditional CM, which can only search one root once time, our new method searches all roots of the polynomial once, and the average time needed to search for one root reduces rapidly. The more roots are searched, the more ECs are obtained.

Open Access Issue
Simple Method for Realizing Weil Theorem in Secure ECC Generation
Tsinghua Science and Technology 2017, 22 (5): 511-519
Published: 11 September 2017
Downloads:13

How to quickly compute the number of points on an Elliptic Curve (EC) has been a longstanding challenge. The computational complexity of the algorithm usually employed makes it highly inefficient. Unlike the general EC, a simple method called the Weil theorem can be used to compute the order of an EC characterized by a small prime number, such as the Kobltiz EC characterized by two. The fifteen secure ECs recommended by the National Institute of Standards and Technology (NIST) Digital Signature Standard contain five Koblitz ECs whose maximum base domain reaches 571 bits. Experimental results show that the computation speed decreases for base domains exceeding 600 bits. In this paper, we propose a simple method that combines the Weil theorem with Pascals triangle, which greatly reduces the computational complexity. We have validated the performance of this method for base fields ranging from 2100 to 21000. Furthermore, this new method can be generalized to any ECs characterized by any small prime number.

Open Access Issue
Byzantine Fault-Tolerant Routing for Large-Scale Wireless Sensor Networks Based on Fast ECDSA
Tsinghua Science and Technology 2015, 20 (6): 627-633
Published: 17 December 2015
Downloads:22

Wireless sensor networks are a favorite target of Byzantine malicious attackers because of their limited energy, low calculation capability, and dynamic topology, and other important characteristics. The Byzantine Generals Problem is one of the classical problems in the area of fault tolerance, and has wide application, especially in distributed databases and systems. There is a lot of research in agreement and replication techniques that tolerate Byzantine faults. However, most of this work is not suited to large-scale wireless sensor networks, due to its high computational complexity. By introducing Fast ECDSA (Elliptic Curve Digital Signature Algorithm), which can resist timing and energy attacks, and reduce the proportion of verifying signature algorithm to generating signature algorithm to 1.2 times, we propose a new Byzantine fault-tolerant routing algorithm for large-scale wireless sensor networks with double-level hierarchical architecture. In different levels, the algorithm runs different BFT protocols. Theory and simulation results have proved that this algorithm has high security and the number of communication rounds between clusters is reduced by 1/3, which balances the network load. At the same time, the application of Fast ECDSA improves the security level of the network without burdening it.

total 5