Sort:
Open Access Research Article Issue
Tribological properties of PTFE-based fabric composites at cryogenic temperature
Friction 2024, 12 (2): 245-257
Published: 04 April 2023
Downloads:11

Fabric composites are widely employed in self-lubricating bearing liners as solid lubrication materials. Although the tribological behaviors of fabric composites have been extensively studied, the cryogenic tribological properties and mechanisms have been scarcely reported and are largely unclear to instruct material design for aerospace and other high-tech applications. Herein, the tribological properties of polytetrafluoroethylene (PTFE)-based hybrid-fabric composites were investigated at cryogenic and ambient temperatures in the form of pin-on-disk friction under heavy loads. The results suggest that the friction coefficients of the hybrid-fabric composites obviously increase with a decrease in wear when the temperature drops from 25 to −150 °C. Moreover, thermoplastic polyetherimide (PEI), as an adhesive for fabric composites, has better cryogenic lubrication performance than thermosetting phenol formaldehyde (PF) resin, which can be attributed to the flexible chemical structure of PEI. The excellent lubrication performance of hybrid-fabric composites is attributed to the transfer film formed by PTFE fibers on the surface of fabrics.

Open Access Topical Review Issue
Progresses on cryo-tribology: lubrication mechanisms, detection methods and applications
International Journal of Extreme Manufacturing 2023, 5 (2): 022004
Published: 29 March 2023
Downloads:9

Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels, liquid fuel rockets, space infrared telescopes, superconducting devices, and planetary exploration, which require solid lubrication for moving parts at low temperatures down to 4 K in cryogenic liquid, gaseous, or vacuum environments. Herein, the research progress regarding cryo-tribology is reviewed. The tribological properties and mechanisms of solid lubricants listed as carbon materials, molybdenum disulfide, polymers, and polymer-based composites with decreasing temperature are summarized. The friction coefficient increases with decreasing temperature induced by thermally activated processes. The mechanism of transfer film formation should be considered as a significant way to enhance the tribological properties of solid lubricants. In addition, applications of solid lubrication on moving parts under cryogenic conditions, such as spherical plain bearings and roller bearings, are introduced. The technology for tribological testing of materials and bearings at cryogenic temperatures is summarized, where the environmental control, motion and loading realization, as well as friction and wear measurement together in a low-temperature environment, result in the difficulties and challenges of the low-temperature tribotester. In particular, novel technologies and tribotesters have been developed for tribotests and tribological studies of solid lubricants, spherical plain bearings, and roller bearings, overcoming limitations regarding cooling in vacuum and resolution of friction measurement, among others, and concentrating on in-situ observation of friction interface. These not only promote a deep understanding of friction and wear mechanism at low temperatures, but also provide insights into the performance of moving parts or components in cryogenic applications.

Open Access Research Article Issue
Intermittent failure mechanism and stabilization of microscale electrical contact
Friction 2023, 11 (4): 538-545
Published: 16 March 2022
Downloads:18

The stability and lifetime of electrical contact pose a major challenge to the performance of micro-electro-mechanical systems (MEMS), such as MEMS switches. The microscopic failure mechanism of electrical contact still remains largely unclear. Here conductive atomic force microscopy with hot switching mode was adopted to simulate the asperity-level contact condition in a MEMS switch. Strong variation and fluctuation of current and adhesion force were observed during 10,000 repetitive cycles, exhibiting an "intermittent failure" characteristic. This fluctuation of electrical contact properties was attributed to insulative carbonaceous contaminants repetitively formed and removed at the contact spot, corresponding to degradation and reestablishment of electrical contact. When contaminant film was formed, the contact interface became "metal/carbonaceous adsorbates/metal" instead of direct metal/metal contact, leading to degradation of the electrical contact state. Furthermore, a system of iridium/graphene on ruthenium (Ir/GrRu) was proposed to avoid direct metal/metal contact, which stabilized the current fluctuation and decreased interfacial adhesion significantly. The existence of graphene enabled less adsorption of carbonaceous contaminants in ambient air and enhanced mechanical protection against the repetitive hot switching actions. This work opens an avenue for design and fabrication of microscale electrical contact system, especially by utilizing two-dimensional materials.

Open Access Research Article Issue
Energy dissipation of atomic-scale friction based on one- dimensional Prandtl–Tomlinson model
Friction 2015, 3 (2): 170-182
Published: 30 June 2015
Downloads:26

The energy transition and dissipation of atomic-scale friction are investigated using the one-dimensional Prandtl–Tomlinson model. A systematic study of the factors influencing the energy dissipation is conducted, indicating that the energy that accumulated during the stick stage does not always dissipate completely during stick-slip motion. We adopt the energy-dissipation ratio (EDR) to describe the relationship between the energy dissipated permanently in the system and the conservative reversible energy that can be reintroduced to the driving system after the slip process. The EDR can change continuously from 100% to 0, covering the stick-slip, intermediate, and smooth-sliding regimes, depending on various factors such as the stiffness, potential-energy corrugation, damping coefficient, sliding velocity, and the temperature of the system. Among these, the parameter η, which depends on both the surface potential and the lateral stiffness, is proven in this paper to have the most significant impact on the EDR. According to η–T phase diagrams of the EDR, the smooth-sliding superlubricity and thermolubricity are found to be unified with regard to the energy dissipation and transition. An analytical formulation for the EDR that can be used to quantitatively predict the amount of energy dissipation is derived from a lateral-force curve.

total 4