Sort:
Open Access Research Article Issue
Oscillating friction of nanoscale capillary bridge
Friction 2022, 10 (2): 200-208
Published: 08 January 2021
Downloads:31

The presence of a capillary bridge between solid surfaces is ubiquitous under ambient conditions. Usually, it leads to a continuous decrease of friction as a function of bridge height. Here, using molecular dynamics we show that for a capillary bridge with a small radius confined between two hydrophilic elastic solid surfaces, the friction oscillates greatly when decreasing the bridge height. The underlying mechanism is revealed to be a periodic ordered-disordered transition at the liquid-solid interfaces. This transition is caused by the balance between the surface tension of the liquid-vapor interface and the elasticity of the surface. This balance introduces a critical size below which the friction oscillates. Based on the mechanism revealed, a parameter-free analytical model for the oscillating friction was derived and found to be in excellent agreement with the simulation results. Our results describe an interesting frictional phenomenon at the nanoscale, which is most prominent for layered materials.

Open Access Research Article Issue
Temperature and velocity dependent friction of a microscale graphite-DLC heterostructure
Friction 2020, 8 (2): 462-470
Published: 04 June 2019
Downloads:17

One of the promising approaches to achieving large scale superlubricity is the use of junctions between existing ultra-flat surface together with superlubric graphite mesas. Here we studied the frictional properties of microscale graphite mesa sliding on the diamond-like carbon, a commercially available material with a ultra-flat surface. The interface is composed of a single crystalline graphene and a diamond-like carbon surface with roughness less than 1 nm. Using an integrated approach, which includes Argon plasma irradiation of diamond-like carbon surfaces, X-ray photoelectron spectroscopy analysis and Langmuir adsorption modeling, we found that while the velocity dependence of friction follows a thermally activated sliding mechanism, its temperature dependence is due to the desorption of chemical groups upon heating. These observations indicate that the edges have a significant contribution to the friction. Our results highlight potential factors affecting this type of emerging friction junctions and provide a novel approach for tuning their friction properties through ion irradiation.

total 2