Publications
Sort:
Open Access Research Article Issue
Structure, morphology, and microwave dielectric properties of SmAlO3 synthesized by stearic acid route
Journal of Advanced Ceramics 2020, 9 (5): 558-566
Published: 22 June 2020
Downloads:51

A rapid and facile approach was developed for the synthesis of ultrafine SmAlO3 powders through the combustion of stearic acid precursors. The obtained products were characterized by typical techniques including X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to analyze the phase composition and microstructure. The dielectric characteristics of SmAlO3 microwave ceramics, using the as-obtained products as original materials, were also studied. Compared with the conventional solid-state reaction method, the synthesis temperature was dramatically reduced to 750 ℃. The large-size sheet structure was composed of a number of micro/nano-scale crystallites, which were mostly irregular in shape due to the mutual growth and overlapping shapes of adjacent grains. The SmAlO3 ceramics with high density and uniform microstructure were obtained after sintering at 1500 ℃ for 4 h due to the favorable sintering activity of the as-synthesized powders. In addition, desired dielectric properties at microwave frequencies (dielectric constant εr = 20.22, quality factor Q·f = 74110 GHz, and a temperature coefficient of resonant frequency τf = -74.6 ppm/℃) were achieved.

total 1