Sort:
Open Access Research Article Issue
Effects of interfacial residual stress on mechanical behavior of SiCf/SiC composites
Journal of Advanced Ceramics 2022, 11 (1): 94-104
Published: 28 October 2021
Downloads:234

Layer-structured interphase, existing between reinforcing fiber and ceramics matrix, is an indispensable constituent for fiber-reinforced ceramic composites due to its determinant role in the mechanical behavior of the composites. However, the interphase may suffer high residual stress because of the mismatch of thermal expansion coefficients in the constituents, and this can exert significant influence on the mechanical behavior of the composites. Here, the residual stress in the boron nitride (BN) interphase of continuous SiC fiber-reinforced SiC composites was measured using a micro-Raman spectrometer. The effects of the residual stress on the mechanical behavior of the composites were investigated by correlating the residual stress with the mechanical properties of the composites. The results indicate that the residual stress increases from 26.5 to 82.6 MPa in tension as the fabrication temperature of the composites rises from 1500 to 1650 ℃. Moreover, the increasing tensile residual stress leads to significant variation of tensile strain, tensile strength, and fiber/matrix debonding mode of the composites. The sublayer slipping of the interphase caused by the residual stress should be responsible for the transformation of the mechanical behavior. This work can offer important guidance for residual stress adjustment in fiber-reinforced ceramic composites.

Open Access Research Article Issue
Residual stress variation in SiCf/SiC composite during heat treatment and its effects on mechanical behavior
Journal of Advanced Ceramics 2020, 9 (5): 567-575
Published: 25 July 2020
Downloads:54

Residual stress originated from thermal expansion mismatch determines the mechanical properties of ceramic matrix composites (CMCs). Here, continuous SiC fiber reinforced SiC matrix (SiCf/SiC) composites were fabricated by nano-infiltration and transient eutectic-phase (NITE) method, and the residual stress of the composites was investigated using high-temperature Raman spectrometer. With temperature increasing from room temperature to 1400 ℃, the residual stresses of the matrix and the fiber decrease from 1.29 to 0.62 GPa and from 0.84 to 0.55 GPa in compression respectively, while that of the interphase decreases from 0.16 to 0.10 GPa in tension. The variation of residual stress shows little effect on the tensile strength of the composites, while causes a slight decrease in the tensile strain. The suppression of fiber/matrix debonding and fiber pulling-out caused by the residual stress reduction in the interphase is responsible for the decreasing tensile strain. This work can open up new alternatives for residual stress analysis in CMCs.

total 2