The crawling process of snakes is known to have fascinating tribological phenomena, whereas investigations on their frictional properties depending on patterned cuticles are insufficient. In this study, we have designed and fabricated biomimetic microstructures inspired by the geometric microunits of Achalinus spinalis cuticle using polyurethane acrylate (PUA) material and performed its tribological analysis. The micro-morphology of this Achalinus-inspired textured polymer surface (AITPS) is characterized by the closely and evenly quasi-rectangular microgrooves, periodically arranged along certain orientations. We have compared the frictional performance of our fabricated AITPS with other competitive microstructure, using a smooth steel ball and commercial clay as an interacting surface. After performing massive friction tests with steel ball and clay, AITPS still maintains good resistance reduction performed compared to the patterned surface with straight microgrooves, which is most likely due to the reduction of actual contact areas at the frictional interface.
- Article type
- Year
- Co-author
Adhesion achieved through feet setae is fundamental for gecko agilely maneuvering. Although diverse hypotheses have been proposed, none of them thoroughly explains the setae function, implying a kind of hybrid-mechanism-based adhesion in geckos. In addition to van der Waals interactions and capillary force, the electrostatic attraction that emerges from triboelectrification was suggested as a component of setae adhesion. Nevertheless, the contribution by electrostatic attraction to the total setae attachment is still controversial. In this study, we analyzed the occurrence of electrostatic attraction at gecko setae through experiments and model analyses. By touching the substrates with only ~1/70th of the foot area, freely wall-climbing geckos developed tribocharge at their feet setae with a density of ~277 pC/mm2, generating electrostatic attractions with a strength of ~4.4 mN/mm2. From this perspective, the adhesion driven by triboelectrification could account for about 1% of total adhesion. Model analyses at spatula level indicated a similar result showing that the electrostatic force might account for ~3% of the adhesion that facilitates wall-climbing in geckos. The low contribution of the electrostatic force partly explains why geckos always face difficulty in maneuvering onto those substrates (e.g., teflon) where they could easily develop tribocharge but difficultly generate van der Waals force. However, long-range electrostatic forces may play other roles in a distance range where the van der Waals interaction cannot function. These findings not only add to our understanding of the mechanism of gecko adhesion, but also will help us advance gecko-inspired fibular adhesives.
Geckos’ ability to move on steep surfaces depends on their excellent adhesive structure, timely adjustments on locomotor behaviors, and elaborates control on reaction forces. However, it is still unclear how they can generate a sufficient driving force that is necessary for locomotion, while ensuring reliable adhesion on steep inclines. We measured the forces acting on each foot and recorded the contact states between feet and substrates when geckos encountered smooth inclination challenges ranging from 0° to 180°. The critical angles of the resultant force vectors of the front and hind-feet increased with respect to the incline angles. When the incline angle became greater than 120°, the critical angles of the front- and hind-feet were similar, and the averages of the critical angles of the front- and hind-feet were both smaller than 120°, indicating that the complicated and accurate synergy among toes endows gecko’s foot an obvious characteristic of “frictional adhesion” during locomotion. Additionally, we established a contact mechanical model for gecko’s foot in order to quantify the contribution of the frictional forces generated by the heel, and the adhesion forces generated by the toes on various inclines. The synergy between multiple contact mechanisms (friction or adhesion) is critical for the reliable attachment on an inclined surface, which is impossible to achieve by using a single-contact mechanism, thereby increasing the animal’s ability to adapt to its environment.
Hypothesis on electrostatic attraction mechanisms involving the hairy adhesion of climbing animals has been a matter of controversy for several years. The detection of tribocharge and forces at attachment organs of animals is a practical method of clarifying the dispute with respect to electrostatic attraction in the attachment of animals. Nonetheless, the tribo-electrification is rarely examined in the contact-adhesion of animals (especially in their free and autonomous attachment) due to the lack of available devices. Therefore, the present study involves establishing a method and an apparatus that enables synchronous detection of tribocharge and contact forces to study tribo-electrification in the free locomotion of geckos. A type of a combined sensor unit that consists of a three-dimensional force transducer and a capacitor-based charge probe is used to measure contact forces and tribocharge with a magnitude corresponding to several nano-Coulombs at a footpad of geckos when they climb vertically upward on an acrylic oligomer substrate. The experimental results indicate that tribocharge at the footpads of geckos is related to contact forces and contact areas. The measured charge allows the expectation of an exact attraction with magnitude corresponding to dozens of newtons per square meter and provides a probability of examining tribo-electrification in animal attachment from a macro level.
Many animals have the natural ability to move on various surfaces, such as those having different roughness and slope substrates, or even vertical walls and ceilings. Legged animals primarily attach to surfaces using claws, soft and hairy pads, or combinations of them. Recent studies have indicated that the frictional forces generated by these structures not only control the movement of animals but also significantly increase the reliability of their attachment. Moreover, the frictional forces of various animals have opposite characteristics and hierarchical properties from toe-to-toe and leg-to-leg. These opposite frictional forces allow animals to attach securely and stably during movement. The coordination of several attachment (adhesion) modes not only helps animals adhere, which would be impossible in single mode, but also increases the overall stability of the attachment (adhesion) system. These findings can help the design of highly adaptable feet for bionic robots in the near future.