Sort:
Open Access Research Article Issue
Efficient and robust strain limiting and treatment of simultaneous collisions with semidefinite programming
Computational Visual Media 2016, 2 (2): 119-130
Published: 07 April 2016
Downloads:28

We present an efficient and robust method which performs well for both strain limiting and treatment of simultaneous collisions. Our method formulates strain constraints and collision constraints as a serial of linear matrix inequalities (LMIs) and linear polynomial inequalities (LPIs), and solves an optimization problem with standard convex semidefinite programming solvers. When performing strain limiting, our method acts on strain tensors to constrain the singular values of the deformation gradient matrix in a specified interval. Our method can be applied to both triangular surface meshes and tetrahedral volume meshes. Compared with prior strain limiting methods, our method converges much faster and guarantees triangle flipping does not occur when applied to a triangular mesh. When performing treatment of simultaneous collisions, our method eliminates all detected collisions during each iteration, leading to higher efficiency and faster convergence than prior collision treatment methods.

total 1