Sort:
Open Access Research Article Issue
Transferring pose and augmenting background for deep human-image parsing and its applications
Computational Visual Media 2018, 4 (1): 43-54
Published: 30 January 2018
Downloads:21

Parsing of human images is a fundamental task for determining semantic parts such as the face, arms, and legs, as well as a hat or a dress. Recent deep-learning-based methods have achieved significant improvements, but collecting training datasets with pixel-wise annotations is labor-intensive. In this paper, we propose two solutions to cope with limited datasets. Firstly, to handle various poses, we incorporate a pose estimation network into an end-to-end human-image parsing network, in order to transfer common features across the domains. The pose estimation network can be trained using rich datasets and can feed valuable features to the human-image parsing network. Secondly, to handle complicated backgrounds, we increase the variation in image backgrounds automatically by replacing the original backgrounds of human images with others obtained from large-scale scenery image datasets. Individually, each solution is versatile and beneficial to human-image parsing, while their combination yields further improvement. We demonstrate the effectiveness of our approach through comparisons and various applications such as garment recoloring, garment texture transfer, and visualization for fashion analysis.

Open Access Research Article Issue
Computational design of iris folding patterns
Computational Visual Media 2016, 2 (4): 321-327
Published: 15 November 2016
Downloads:47

Iris folding is an art-form consisting of layered strips of paper, forming a spiral pattern behind an aperture, which can be used to make cards and gift tags. This paper describes an interactive computational tool to assist in the design and construction of original iris folding patterns. The design of iris folding patterns is formulated as the calculation of a circumscribed polygonal sequence around a seed polygon. While it is possible to compute the positions of vertices analytically for a regular polygon, it is not straightforward to do so for irregular polygons. We give a numerical method for irregular polygons, which can be applied to arbitrary convex seed polygons. The user can quickly experiment with various patterns using the system prior to constructing the art-form.

total 2