Sort:
Open Access Research Article Issue
Computing knots by quadratic and cubic polynomial curves
Computational Visual Media 2020, 6 (4): 417-430
Published: 17 October 2020
Downloads:62

A new method is presented to determine parameter values (knot) for data points for curve and surface generation. With four adjacent data points, a quadratic polynomial curve can be determined uniquely if the four points form a convex polygon. When the four data points do not form a convex polygon, a cubic polynomial curve with one degree of freedom is used to interpolate the four points, so that the interpolant has better shape, approximating the polygon formed by the four data points. The degree of freedom is determined by minimizing the cubic coefficient of the cubic polynomial curve. The advantages of the new method are, firstly, the knots computed have quadratic polynomial precision, i.e., if the data points are sampled from a quadratic polynomial curve, and the knots are used to construct a quadratic polynomial, it reproduces the original quadratic curve. Secondly, the new method is affine invariant, which is significant, as most parameterization methods do not have this property. Thirdly, it computes knots using a local method. Experiments show that curves constructed using knots computed by the new method have better interpolation precision than for existing methods.

Open Access Research Article Issue
Saliency-based image correction for colorblind patients
Computational Visual Media 2020, 6 (2): 169-189
Published: 10 June 2020
Downloads:47

Improper functioning, or lack, of human cone cells leads to vision defects, making it impossible for affected persons to distinguish certain colors. Colorblind persons have color perception, but their ability to capture color information differs from that of normal people: colorblind and normal people perceive the same image differently. It is necessary to devise solutions to help persons with color blindness understand images and distinguish different colors. Most research on this subject is aimed at adjusting insensitive colors, enabling colorblind persons to better capture color information, but ignores the attention paid by colorblind persons to the salient areas of images. The areas of the image seen as salient by normal people generally differ from those seen by the colorblind. To provide the same saliency for colorblind persons and normal people, we propose a saliency-based image correction algorithm for color blindness. Adjusted colors in the adjusted image are harmonious and realistic, and the method is practical. Our experimental results show that this method effectively improves images, enabling the colorblind to see the same salient areas as normal people.

total 2