Sort:
Open Access Issue
Deep reinforcement learning for online scheduling of photovoltaic systems with battery energy storage systems
Intelligent and Converged Networks 2024, 5 (1): 28-41
Published: 28 March 2024
Downloads:6

A new online scheduling algorithm is proposed for photovoltaic (PV) systems with battery-assisted energy storage systems (BESS). The stochastic nature of renewable energy sources necessitates the employment of BESS to balance energy supplies and demands under uncertain weather conditions. The proposed online scheduling algorithm aims at minimizing the overall energy cost by performing actions such as load shifting and peak shaving through carefully scheduled BESS charging/discharging activities. The scheduling algorithm is developed by using deep deterministic policy gradient (DDPG), a deep reinforcement learning (DRL) algorithm that can deal with continuous state and action spaces. One of the main contributions of this work is a new DDPG reward function, which is designed based on the unique behaviors of energy systems. The new reward function can guide the scheduler to learn the appropriate behaviors of load shifting and peak shaving through a balanced process of exploration and exploitation. The new scheduling algorithm is tested through case studies using real world data, and the results indicate that it outperforms existing algorithms such as Deep Q-learning. The online algorithm can efficiently learn the behaviors of optimum non-casual off-line algorithms.

Open Access Issue
Deep reinforcement learning for dynamic computation offloading and resource allocation in cache-assisted mobile edge computing systems
Intelligent and Converged Networks 2020, 1 (2): 181-198
Published: 01 December 2020
Downloads:133

Mobile Edge Computing (MEC) is one of the most promising techniques for next-generation wireless communication systems. In this paper, we study the problem of dynamic caching, computation offloading, and resource allocation in cache-assisted multi-user MEC systems with stochastic task arrivals. There are multiple computationally intensive tasks in the system, and each Mobile User (MU) needs to execute a task either locally or remotely in one or more MEC servers by offloading the task data. Popular tasks can be cached in MEC servers to avoid duplicates in offloading. The cached contents can be either obtained through user offloading, fetched from a remote cloud, or fetched from another MEC server. The objective is to minimize the long-term average of a cost function, which is defined as a weighted sum of energy consumption, delay, and cache contents’ fetching costs. The weighting coefficients associated with the different metrics in the objective function can be adjusted to balance the tradeoff among them. The optimum design is performed with respect to four decision parameters: whether to cache a given task, whether to offload a given uncached task, how much transmission power should be used during offloading, and how much MEC resources to be allocated for executing a task. We propose to solve the problems by developing a dynamic scheduling policy based on Deep Reinforcement Learning (DRL) with the Deep Deterministic Policy Gradient (DDPG) method. A new decentralized DDPG algorithm is developed to obtain the optimum designs for multi-cell MEC systems by leveraging on the cooperations among neighboring MEC servers. Simulation results demonstrate that the proposed algorithm outperforms other existing strategies, such as Deep Q-Network (DQN).

total 2