The advancement in neuroscience and computer science promotes the ability of the human brain to communicate and interact with the environment, making brain-computer interface (BCI) top interdisciplinary research. Furthermore, with the modern technology advancement in artificial intelligence (AI), including machine learning (ML) and deep learning (DL) methods, there is vast growing interest in the electroencephalogram (EEG)-based BCIs for AI-related visual, literal, and motion applications. In this review study, the literature on mainstreams of AI for the EEG-based BCI applications is investigated to fill gaps in the interdisciplinary BCI field. Specifically, the EEG signals and their main applications in BCI are first briefly introduced. Next, the latest AI technologies, including the ML and DL models, are presented to monitor and feedback human cognitive states. Finally, some BCI-inspired AI applications, including computer vision, natural language processing, and robotic control applications, are presented. The future research directions of the EEG-based BCI are highlighted in line with the AI technologies and applications.
Publications
- Article type
- Year
Article type
Year
Open Access
Review Article
Issue
Brain Science Advances 2020, 6(3): 162-170
Published: 04 February 2021
Downloads:180
Total 1