AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Wearable Continuous Blood Pressure Monitoring Based on Pulsatile Cycle Volume Adjustment Method

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China, and also with School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China, and also with School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China, and with School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China, and also with Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100730, China
Show Author Information

Abstract

Accurate and portable Blood Pressure (BP) monitoring is vital for managing cardiovascular diseases. However, existing wearable continuous BP monitoring technologies are often inaccurate and rely on external calibration, limiting their practical application in continuous BP monitoring. To address this challenge, we have developed a Wearable continuous non-invasive BP Monitor (WeBPM) equipped with a finger cuff sensor, capable of monitoring BP continuously and accurately within medical-grade precision. WeBPM integrates advanced finger oscillographic BP measurement technology to provide reliable self-calibration functionality. Moreover, Pulsatile Cycle Volume Adjustment Method (PCVAM) we proposed for the closed-loop phase can continuously track changes in vasomotor tone under a controlled frequency based on pulsatile cycles, thereby enabling continuous BP measurement. In comparative experiments with the Nexfin monitor, WeBPM demonstrates excellent performance in induced dynamic BP experiments, with measurement errors of (–1.4 ± 6.24) mmHg for Systolic BP (SBP) and (–0.82 ± 4.83) mmHg for Diastolic BP (DBP). Additionally, compared to clinical invasive reference measurements, WeBPM’s SBP and DBP measurement errors are (–1.74 ± 4.9) mmHg and (0.37 ± 3.28) mmHg, respectively, further proving its outstanding performance. These results highlight WeBPM’s potential in personalized health management and remote monitoring, offering a new solution for continuous non-invasive BP monitoring.

References

[1]

The Writing Committee of the Report on Cardiovascular Health and Diseases in China and S. S. Hu, Report on cardiovascular health and diseases in China 2021: An updated summary, J. Geriatr. Cardiol., vol. 20, no. 6, pp. 399–430, 2023.

[2]

D. Li, C. Shi, J. Zhao, Y. Liu, and C. Li, Intra-patient and inter-patient multi-classification of severe cardiovascular diseases based on CResFormer, Tsinghua Science and Technology, vol. 28, no. 2, pp. 386–404, 2023.

[3]

L. C. Saiz, J. Gorricho, J. Garjón, M. C. Celaya, J. Erviti, and L. Leache, Blood pressure targets for the treatment of people with hypertension and cardiovascular disease, Cochrane Database Syst. Rev., vol. 9, no. 9, p. CD010315, 2020.

[4]

B. Cohen, E. Rivas, D. Yang, E. J. Mascha, S. Ahuja, A. Turan and D. I. Sessler, Intraoperative hypotension and myocardial injury after noncardiac surgery in adults with or without chronic hypertension: A retrospective cohort analysis, Anesth. Analg., vol. 135, no. 2, pp. 329–340, 2022.

[5]

M. Wajngarten and G. S. Silva, Hypertension and stroke: Update on treatment, Eur. Cardiol., vol. 14, no. 2, pp. 111–115, 2019.

[6]

J. E. Hall, J. M. do Carmo, A. A. da Silva, Z. Wang, and M. E. Hall, Obesity, kidney dysfunction and hypertension: Mechanistic links, Nat. Rev. Nephrol., vol. 15, no. 6, pp. 367–385, 2019.

[7]

R. Mukkamala, G. S. Stergiou, and A. P. Avolio, Cuffless blood pressure measurement, Annu. Rev. Biomed. Eng., vol. 24, pp. 203–230, 2022.

[8]

V. Figini, S. Galici, D. Russo, I. Centonze, M. Visintin, and G. Pagana, Improving cuff-less continuous blood pressure estimation with linear regression analysis, Electronics, vol. 11, no. 9, p. 1442, 2022.

[9]

M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic, S. Rajan, and I. Batkin, Oscillometric blood pressure estimation: Past, present, and future, IEEE Rev. Biomed. Eng., vol. 8, pp. 44–63, 2015.

[10]

T. Panula, J. P. Sirkia, D. Wong, and M. Kaisti, Advances in non-invasive blood pressure measurement techniques, IEEE Rev. Biomed. Eng., vol. 16, pp. 424–438, 2023.

[11]

L. Xu, P. Wang, P. Xia, P. Wu, X. Chen, L. Du, J. Liu, N. Xue, and Z. Fang, A flexible ultrasound array for local pulse wave velocity monitoring, Biosensors, vol. 12, no. 7, p. 479, 2022.

[12]

B. Jana, K. Oswal, S. Mitra, G. Saha, and S. Banerjee, Windkessel model-based cuffless blood pressure estimation using continuous wave Doppler ultrasound system, IEEE Sensors J., vol. 20, no. 17, pp. 9989–9999, 2020.

[13]

C. Wang, X. Li, H. Hu, L. Zhang, Z. Huang, M. Lin, Z. Zhang, Z. Yin, B. Huang, H. Gong, et al., Monitoring of the central blood pressure waveform via a conformal ultrasonic device, Nat. Biomed. Eng., vol. 2, no. 9, pp. 687–695, 2018.

[14]

A. S. Meidert, W. Huber, A. Hapfelmeier, M. Schöfthaler, J. N. Müller, N. Langwieser, J. Y. Wagner, R. M. Schmid, and B. Saugel, Evaluation of the radial artery applanation tonometry technology for continuous noninvasive blood pressure monitoring compared with central aortic blood pressure measurements in patients with multiple organ dysfunction syndrome, J. Criti. Care, vol. 28, no. 6, pp. 908–912, 2013.

[15]

Z. B. Zhou, T. R. Cui, D. Li, J. M. Jian, Z. Li, S. R. Ji, X. Li, J. D. Xu, H. F. Liu, Y. Yang, et al., Wearable continuous blood pressure monitoring devices based on pulse wave transit time and pulse arrival time: A review, Materials, vol. 16, no. 6, p. 2133, 2023.

[16]

V. Fleischhauer, N. Ruprecht, M. Sorelli, L. Bocchi, and S. Zaunseder, Pulse decomposition analysis in photoplethysmography imaging, Physiol. Meas., vol. 41, no. 9, p. 095009, 2020.

[17]

X. Xing, Z. Ma, M. Zhang, X. Gao, Y. Li, M. Song, and W. Dong, Robust blood pressure estimation from finger photoplethysmography using age-dependent linear models, Physiol. Meas., vol. 41, no. 2, p. 025007, 2020.

[18]

N. Pilz, A. Patzak, and T. L. Bothe, Continuous cuffless and non-invasive measurement of arterial blood pressure—concepts and future perspectives, Blood Press., vol. 31, no. 1, pp. 254–269, 2022.

[19]
Z. Liang and M. A. Chapa-Martell, Validation of Omron wearable blood pressure monitor HeartGuideTM in free-living environments, in Proc. 9 th EAI Int. Conf. Wireless Mobile Communication and Healthcare, Virtual Event, 2021, pp. 339–350.
[20]

L. Wang, H. Xian, J. Guo, W. Li, J. Wang, Q. Chen, X. Fu, H. Li, Q. Chen, W. Zhang, et al., A novel blood pressure monitoring technique by smart HUAWEI WATCH: A validation study according to the ANSI/AAMI/ISO 81060–2: 2018 guidelines, Front. Cardiovasc. Med., vol. 9, p. 923655, 2022.

[21]
J. Penaz, Photoelectric measurement of blood pressure, volume and flow in the finger, presented at the Digest of the 10th Int. Conf. Medical and Biological Engineering, Germany, Dresden, 1973.
[22]

K. Yamakoshi, A. Kamiya, H. Shimazu, H. Ito, and T. Togawa, Noninvasive automatic monitoring of instantaneous arterial blood pressure using the vascular unloading technique, Med. Biol. Eng. Comput., vol. 21, no. 5, pp. 557–565, 1983.

[23]

J. Fortin, W. Marte, R. Grüllenberger, A. Hacker, W. Habenbacher, A. Heller, C. Wagner, P. Wach, and F. Skrabal, Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops, Comput. Biol. Med., vol. 36, no. 9, pp. 941–957, 2006.

[24]

F. Balzer, M. Habicher, M. Sander, J. Sterr, S. Scholz, A. Feldheiser, M. Müller, C. Perka, and S. Treskatsch, Comparison of the non-invasive Nexfin® monitor with conventional methods for the measurement of arterial blood pressure in moderate risk orthopaedic surgery patients, J. Int. Med. Res., vol. 44, no. 4, pp. 832–843, 2016.

[25]

K. H. Smolle, M. Schmid, H. Prettenthaler, and C. Weger, The accuracy of the CNAP®Device compared with invasive radial artery measurements for providing continuous noninvasive arterial blood pressure readings at a medical intensive care unit, Anesth. Analg., vol. 121, no. 6, pp. 1508–1516, 2015.

[26]

D. E. Rogge, J. Y. Nicklas, G. Schön, O. Grothe, S. A. Haas, D. A. Reuter, and B. Saugel, Continuous noninvasive arterial pressure monitoring in obese patients during bariatric surgery: An evaluation of the vascular unloading technique (Clearsight system), Anesth. Analg., vol. 128, no. 3, pp. 477–483, 2019.

[27]

J. Fortin, D. E. Rogge, C. Fellner, D. Flotzinger, J. Grond, K. Lerche, and B. Saugel, A novel art of continuous noninvasive blood pressure measurement, Nat. Commun., vol. 12, no. 1, p. 1387, 2021.

[28]
T. Panula, J. P. Sirkiä, and M. Kaisti, Miniaturization of a finger-worn blood pressure instrument, in Proc. 2021 43 rd Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Virtual Event, 2021, pp. 7441–7444.
[29]

T. Panula, J. P. Sirkiä, and M. Kaisti, Continuous blood pressure monitoring using nonpulsatile photoplethysmographic components for low-frequency vascular unloading, IEEE Trans. Instrum. Meas., vol. 72, p. 4004910, 2023.

[30]

T. Panula, T. Koivisto, M. Pänkäälä, T. Niiranen, I. Kantola, and M. Kaisti, An instrument for measuring blood pressure and assessing cardiovascular health from the fingertip, Biosens. Bioelectron., vol. 167, p. 112483, 2020.

[31]

P. Wu, Z. Bai, L. Xu, P. Wang, X. Chen, L. Du, X. Li, Z. Zhao, and Z. Fang, New approaches for rapid setpoint determination and uninterrupted tracking in non-invasive continuous blood pressure monitoring based on volume-clamp method, Biomed. Signal Process. Control, vol. 86, p. 105305, 2023.

[32]

M. A. Alvarez, R. Padwal, J. Ringrose, A. Jalali, and W. Hiebert, Optimum waveform envelopes and amplitude ratios in oscillometric blood pressure estimation, Blood Press. Monit., vol. 26, no. 1, pp. 53–59, 2021.

[33]

G. W. Mauck, C. R. Smith, L. A. Geddes, and J. D. Bourland, The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure—Part II, J. Biomech. Eng., vol. 102, no. 1, pp. 28–33, 1980.

[34]

A. Chandrasekhar, M. Yavarimanesh, J. O. Hahn, S. H. Sung, C. H. Chen, H. M. Cheng, and R. Mukkamala, Formulas to explain popular oscillometric blood pressure estimation algorithms, Front. Physiol., vol. 10, p. 1415, 2019.

[35]

R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, A review of PID control, tuning methods and applications, Int. J. Dyn. Control, vol. 9, no. 2, pp. 818–827, 2021.

[36]

K. Gao, J. Song, X. Wang, and H. Li, Fractional-order proportional-integral-derivative linear active disturbance rejection control design and parameter optimization for hypersonic vehicles with actuator faults, Tsinghua Science and Technology, vol. 26, no. 1, pp. 9–23, 2021.

[37]

M. Jansson, Subspace identification and ARX modeling, IFAC Proc. Vol., vol. 36, no. 16, pp. 1585–1590, 2003.

[38]
J. Fortin, W. Marte, R. Grüllenberger, A. Hacker, W. Habenbacher, A. Heller, C. Wagner, P. Wach, and F. Skrabal, Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops, Comput. Biol. Med., vol. 36, no. 9, pp. 941–957, 2006.
[39]

G. S. Stergiou, B. Alpert, S. Mieke, R. Asmar, N. Atkins, S. Eckert, G. Frick, B. Friedman, T. Graßl, T. Ichikawa, et al., A universal standard for the validation of blood pressure measuring devices, Hypertension, vol. 71, no. 3, pp. 368–374, 2018.

[40]
A. Dash, N. Ghosh, A. Patra, and A. D. Choudhury, Estimation of arterial blood pressure waveform from photoplethysmogram signal using linear transfer function approach, in Proc. 2020 42 nd Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Montreal, Canada, 2020, pp. 2691–2694.
[41]

E. Zahedi, V. Sohani, M. A. M. Ali, K. Chellappan, and G. K. Beng, Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram, J. Healthc. Eng., vol. 6, no. 1, pp. 121–144, 2015.

[42]

W. Shi, C. Zhou, Y. Zhang, K. Li, X. Ren, H. Liu, and X. Ye, Hybrid modeling on reconstitution of continuous arterial blood pressure using finger photoplethysmography, Biomed. Signal Process. Control, vol. 85, p. 104972, 2023.

[43]
Y. Ota, A. Kokubo, S. Yamashita, and K. Kario, Development of small and lightweight beat-by-beat blood pressure monitoring device based on tonometry, in Proc. 2021 43 rd Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Virtual Event, 2021, pp. 5455–5458.
[44]
T. Pan, M. Deng, C. Du, J. Fang, C. Xu, C. Guo, J. Huang, K. Li, L. Chen, Y. T. Zhang, et al., Flexible adaptive sensing tonometry for medical-grade multi-parametric hemodynamic monitoring, https://doi.org/10.21203/rs.3.rs-3344801/v1, 2023.
[45]

Z. Song, Z. Cao, Z. Li, J. Wang, and Y. Liu, Inertial motion tracking on mobile and wearable devices: Recent advancements and challenges, Tsinghua Science and Technology, vol. 26, no. 5, pp. 692–705, 2021.

[46]

R. D. M. Jones, J. P. Kornberg, C. J. Roulson, A. R. Visram, and M. G. Irwin, The Finapres 2300e finger cuff, Anaesthesia, vol. 48, no. 7, pp. 611–615, 1993.

[47]
R. Narasimhan, T. Parlikar, G. Verghesel, and M. V. McConnell, Finger-wearable blood pressure monitor, in Proc. 2018 40 th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Honolulu, HI, USA, 2018, pp. 3792–3795.
Tsinghua Science and Technology
Pages 650-669
Cite this article:
Wu P, Bai Z, Xia P, et al. Wearable Continuous Blood Pressure Monitoring Based on Pulsatile Cycle Volume Adjustment Method. Tsinghua Science and Technology, 2025, 30(2): 650-669. https://doi.org/10.26599/TST.2024.9010043

94

Views

6

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 December 2023
Revised: 24 January 2024
Accepted: 23 February 2024
Published: 09 December 2024
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return