AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Advanced Deep Neural Network with Unified Feature-Aware and Label Embedding for Multi-Label Arrhythmias Classification

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China, and also with School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Research Unit of Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
Air Force Medical Center, Air Force Medical University, Beijing 100142, China
School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
Show Author Information

Abstract

Multi-label arrhythmias classification is of great significance to the diagnosis of cardiovascular disease, and it is a challenging task as it requires identifying the label subset most related to each instance. In this paper, by integrating a deep residual neural network and auto-encoder, we propose an advanced deep neural network (DNN) framework with unified feature-aware and label embedding to perform multi-label arrhythmias classification involving 30 types of arrhythmias. Firstly, a deep residual neural network is built to extract the complex pathological features from varying-dimensional electrocardiograms (ECGs). Secondly, the mean square error loss is adopted to learn a latent space associating the deep pathological features and the corresponding label data, and then to achieve unified feature-label embedding. Thirdly, the label-correlation aware loss is introduced to optimize the auto-encoder architecture, which enables our model to exploit label-correlation for improved multi-label prediction. Our proposed DNN model can allow end-to-end training and prediction, which can perform feature-aware, label embedding, and label-correlation aware prediction in a unified framework. Finally, our proposed model is evaluated on the currently largest public dataset worldwide, and achieves the challenge metric scores of 0.492, 0.495, and 0.490 on the 12-lead, 3-lead, and all-lead version ECGs, respectively. The performance of our approach outperforms other current state-of-the-art methods in the leave-one-dataset-out cross-validation setting, which demonstrates that our approach has great competitiveness in identifying a wider range of multi-label arrhythmias.

References

[1]
World Health Organization, Cardiovascular diseases (CVDs), https://www.who.int/en/news-room/factsheets/detail/cardiovascular-diseases-(cvds), 2016.
[2]

Y. D. Zhang, Z. Dong, S. H. Wang, X. Yu, X. Yao, Q. Zhou, H. Hu, M. Li, C. Jiménez-Mesa, J. Ramirez, et al., Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation, Inf. Fusion, vol. 64, pp. 149–187, 2020.

[3]

S. Wang, M. E. Celebi, Y. D. Zhang, X. Yu, S. Lu, X. Yao, Q. Zhou, M. G. Miguel, Y. Tian, J. M. Gorriz, et al., Advances in data preprocessing for biomedical data fusion: An overview of the methods, challenges, and prospects, Inf. Fusion, vol. 76, pp. 376–421, 2021.

[4]

U. Satija, B. Ramkumar, and M. Sabarimalai Manikandan, Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring, IEEE Internet Things J., vol. 4, no. 3, pp. 815–823, 2017.

[5]
S. C. Virgeniya and E. Ramaraj, IoT and big data for ECG signal classification—A quick decision system, in Proc. 2nd Int. Conf. Communication, Computing and Industry 4.0 (C2I4), Bangalore, India, 2021, pp. 1–6.
[6]

L. Sun, Y. Wang, Z. Qu, and N. N. Xiong, BeatClass: A sustainable ECG classification system in IoT-based eHealth, IEEE Internet Things J., vol. 9, no. 10, pp. 7178–7195, 2022.

[7]

S. Asgari, A. Mehrnia, and M. Moussavi, Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine, Comput. Biol. Med., vol. 60, pp. 132–142, 2015.

[8]

R. S. Andersen, A. Peimankar, and S. Puthusserypady, A deep learning approach for real-time detection of atrial fibrillation, Expert Syst. Appl., vol. 115, pp. 465–473, 2019.

[9]

M. Arif, I. A. Malagore, and F. A. Afsar, Detection and Localization of Myocardial Infarction using K-nearest Neighbor Classifier, J. Med. Syst., vol. 36, no. 1, pp. 279–289, 2012.

[10]

R. K. Tripathy, A. Bhattacharyya, and R. B. Pachori, Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network, IEEE Sens. J., vol. 19, no. 23, pp. 11437–11448, 2019.

[11]

R. Ghorbani Afkhami, G. Azarnia, and M. Ali Tinati, Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals, Pattern Recognit. Lett., vol. 70, pp. 45–51, 2016.

[12]

L. Qin, Y. Xie, X. Liu, X. Yuan, and H. Wang, An end-to-end 12-leading electrocardiogram diagnosis system based on deformable convolutional neural network with good antinoise ability, IEEE Trans. Instrum. Meas., vol. 70, pp. 1–13, 2021.

[13]

A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, M. P. Turakhia, and A. Y. Ng, Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network, Nat. Med., vol. 25, no. 1, pp. 65–69, 2019.

[14]
S. Jiménez-Serrano, M. Rodrigo, C. J. Calvo, F. Castells, and J. Millet, Multiple cardiac disease detection from minimal-lead ECG combining feedforward neural networks with a one-vs.-rest approach, in Proc. 2021 Computing in Cardiology (CinC), Brno, Czech Republic, 2021, pp. 1–4.
[15]
G. Nalbantov, S. Ivanov, and J. van Prehn, Multi-class classification of pathologies found on short ECG signals, in Proc. 2020 Computing in Cardiology Conf. (CinC), Rimini, Italy, 2020, pp. 1–4.
[16]

S. Jiménez-Serrano, M. Rodrigo, C. J. Calvo, J. Millet, and F. Castells, From 12 to 1 ECG lead: Multiple cardiac condition detection mixing a hybrid machine learning approach with a one-versus-rest classification strategy, Physiol. Meas., vol. 43, no. 6, p. 064003, 2022.

[17]

Y. Li, Z. Zhang, F. Zhou, Y. Xing, J. Li, and C. Liu, Multi-label classification of arrhythmia for long-term electrocardiogram signals with feature learning, IEEE Trans. Instrum. Meas., vol. 70, pp. 1–11, 2021.

[18]

A. H. Ribeiro, M. H. Ribeiro, G. M. M. Paixão, D. M. Oliveira, P. R. Gomes, J. A. Canazart, M. P. S. Ferreira, C. R. Andersson, P. W. MacFarlane, W. Meira Jr, et al., Automatic diagnosis of the 12-lead ECG using a deep neural network, Nat. Commun., vol. 11, no. 1, p. 1760, 2020.

[19]

P. Xia, Z. He, Z. Bai, Y. Wang, X. Yu, F. Geng, L. Du, X. Chen, P. Wang, Y. Zhu, et al., A novel multi-scale 2D CNN with weighted focal loss for arrhythmias detection on varying-dimensional ECGs, Physiol. Meas., vol. 43, no. 10, p. 104003, 2022.

[20]
P. Nejedly, A. Ivora, R. Smisek, I. Viscor, Z. Koscova, P. Jurak, and F. Plesinger, Classification of ECG using ensemble of residual CNNs with attention mechanism, in Proc. Computing in Cardiology (CinC), Brno, Czech Republic, 2021, pp. 1–4.
[21]

G. Tsoumakas and I. Katakis, Multi-label classification, Int. J. Data Warehous. Min., vol. 3, no. 3, pp. 1–13, 2007.

[22]
D. Hsu, S. M. Kakade, J. Langford, and T. Zhang, Multi-label prediction via compressed sensing, in Proc. 22nd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2009, pp. 772–780.
[23]
Z. Lin, G. Ding, M. Hu, and J. Wang, Multi-label classification via feature-aware implicit label space encoding, in Proc. 31st Int. Conf. Machine Learning, Beijing, China, 2014, p. 325–333.
[24]

C. K. Yeh, W. C. Wu, W. J. Ko, and Y. C. F. Wang, Learning deep latent space for multi-label classification, Proc. AAAI Conf. Artif. Intell., vol. 31, no. 1, pp. 2838–2844, 2017.

[26]

Z. Wu, H. Li, X. Wang, Z. Wu, L. Zou, L. Xu, and M. Tan, New benchmark for household garbage image recognition, Tsinghua Science and Technology, vol. 27, no. 5, pp. 793–803, 2022.

[27]

S. Jiang, S. Fu, N. Lin, and Y. Fu, Pretrained models and evaluation data for the Khmer language, Tsinghua Science and Technology, vol. 27, no. 4, pp. 709–718, 2022.

[28]
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.
[29]

M. B. Alkmim, R. M. Figueira, M. S. Marcolino, C. S. Cardoso, M. Pena de Abreu, L. R. Cunha, D. F. da Cunha, A. P. Antunes, A. G. de A Resende, E. Santos Resende, et al., Improving patient access to specialized health care: The Telehealth Network of Minas Gerais, Brazil, Bull. World Health Organ., vol. 90, no. 5, pp. 373–378, 2012.

[30]

M. L. Zhang and Z. H. Zhou, Multilabel neural networks with applications to functional genomics and text categorization, IEEE Trans. Knowl. Data Eng., vol. 18, no. 10, pp. 1338–1351, 2006.

[31]
M. A. Reyna, N. Sadr, E. A. P. Alday, A. Gu, A. J. Shah, C. Robichaux, A. B. Rad, A. Elola, S. Seyedi, S. Ansari, et al., Will two do? Varying dimensions in electrocardiography: The PhysioNet/computing in cardiology challenge 2021, in Proc. 2021 Computing in Cardiology (CinC), Brno, Czech Republic, 2021, pp. 1–4.
[32]

M. A. Reyna, N. Sadr, E. A. Perez Alday, A. Gu, A. J. Shah, C. Robichaux, A. Bahrami Rad, A. Elola, S. Seyedi, S. Ansari, et al., Issues in the automated classification of multilead ECGs using heterogeneous labels and populations, Physiol. Meas., vol. 43, no. 8, p. 084001, 2022.

[33]
V. Tihonenko, A. Khaustov, and S. Ivanov, St. Petersburg institute of cardiological technics 12-lead arrhythmia database, https://physionet.org/content/incartdb/1.0.0/, 2008.
[34]

R. Bousseljot, D. Kreiseler, and A. Schnabel, Nutzung der EKG-signaldatenbank cardiodat der PTB über das Internet, Biomed. Tech., vol. 40, pp. 317–318, 2009.

[35]

P. Wagner, N. Strodthoff, R. D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, and T. Schaeffter, PTB-XL, a large publicly available electrocardiography dataset, Sci. Data, vol. 7, no. 1, p. 154, 2020.

[36]

J. Zheng, H. Chu, D. Struppa, J. Zhang, S. M. Yacoub, H. El-Askary, A. Chang, L. Ehwerhemuepha, I. Abudayyeh, A. Barrett, et al., Optimal multi-stage arrhythmia classification approach, Sci. Rep., vol. 10, no. 1, p. 2898, 2020.

[37]

J. Zheng, J. Zhang, S. Danioko, H. Yao, H. Guo, and C. Rakovski, A 12-lead electrocardiogram database for arrhythmia research covering more than 10000 patients, Sci. Data, vol. 7, no. 1, p. 48, 2020.

[38]

F. Liu, C. Liu, L. Zhao, X. Zhang, X. Wu, X. Xu, Y. Liu, C. Ma, S. Wei, Z. He, et al., An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection, J. Med. Imag. Health Inform., vol. 8, no. 7, pp. 1368–1373, 2018.

[39]

E. A. Perez Alday, A. Gu, A. J Shah, C. Robichaux, A. K. Ian Wong, C. Liu, F. Liu, A. Bahrami Rad, A. Elola, S. Seyedi, et al., Classification of 12-lead ECGs: The PhysioNet/computing in cardiology challenge 2020, Physiol. Meas., vol. 41, no. 12, p. 124003, 2021.

[40]

G. B. Moody and R. G. Mark, The impact of the MIT-BIH Arrhythmia Database, IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, 2001.

[41]
G. Clifford, C. Liu, B. Moody, L. W. Lehman, I. Silva, Q. Li, A. Johnson, and R. Mark, AF classification from a short single lead ECG recording: The physionet computing in cardiology challenge 2017, in Proc. Computing in Cardiology Conf. (CinC), Rennes, France, 2017, pp. 1–4.
[42]

M. L. Zhang and Z. H. Zhou, A review on multi-label learning algorithms, IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819–1837, 2014.

[43]

Ľ. Antoni, E. Bruoth, P. Bugata, P. Bugata, D. Gajdoš, Š. Horvát, D. Hudák, V. Kmečová, R. Staňa, M. Staňková, et al., Automatic ECG classification and label quality in training data, Physiol. Meas., vol. 43, no. 6, p. 064008, 2022.

[44]
N. L. Wickramasinghe and M. Athif, Multi-label cardiac abnormality classification from electrocardiogram using deep convolutional neural networks, in Proc. Computing in Cardiology (CinC), Brno, Czech Republic, 2021, pp. 1–4.
[45]
A. H. Kashou, A. Goyal, and T. Nguyen, Atrioventricular block (StatPearls), https://www.ncbi.nlm.nih.gov/books/NBK459147/, 2022.
[46]

R. N. MacAlpin, Significance of abnormal Q waves in the electrocardiograms of adults less than 40 years old, Ann. Noninvasive Electrocardiol., vol. 11, no. 3, pp. 203–210, 2006.

[47]

F. D’Ascenzi, F. Anselmi, P. E. Adami, and A. Pelliccia, Interpretation of T-wave inversion in physiological and pathological conditions: Current state and future perspectives, Clin. Cardiol., vol. 43, no. 8, pp. 827–833, 2020.

[48]
H. Han, S. Park, S. Min, H. S. Choi, E. Kim, H. Kim, S. Park, J. Kim, J. Park, J. An et al., Towards high generalization performance on electrocardiogram classification, in Proc. 2021 Computing in Cardiology (CinC), Brno, Czech Republic, 2021, pp. 1–4.
[49]
G. B. Moody, Paper, code, and official scores, https://moodychallenge.physionet.org/2021/results/, 2021.
[50]

H. Hotelling, Relations between two sets of variates, Biometrika, vol. 28, nos. 3 & 4, pp. 321–377, 1936.

[51]

J. R. Kettenring, Canonical analysis of several sets of variables, Biometrika, vol. 58, no. 3, pp. 433–451, 1971.

Tsinghua Science and Technology
Pages 1251-1269
Cite this article:
Xia P, Bai Z, Yao Y, et al. Advanced Deep Neural Network with Unified Feature-Aware and Label Embedding for Multi-Label Arrhythmias Classification. Tsinghua Science and Technology, 2025, 30(3): 1251-1269. https://doi.org/10.26599/TST.2023.9010162

37

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 19 November 2023
Revised: 17 December 2023
Accepted: 24 December 2023
Published: 30 December 2024
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return