Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Multi-label arrhythmias classification is of great significance to the diagnosis of cardiovascular disease, and it is a challenging task as it requires identifying the label subset most related to each instance. In this paper, by integrating a deep residual neural network and auto-encoder, we propose an advanced deep neural network (DNN) framework with unified feature-aware and label embedding to perform multi-label arrhythmias classification involving 30 types of arrhythmias. Firstly, a deep residual neural network is built to extract the complex pathological features from varying-dimensional electrocardiograms (ECGs). Secondly, the mean square error loss is adopted to learn a latent space associating the deep pathological features and the corresponding label data, and then to achieve unified feature-label embedding. Thirdly, the label-correlation aware loss is introduced to optimize the auto-encoder architecture, which enables our model to exploit label-correlation for improved multi-label prediction. Our proposed DNN model can allow end-to-end training and prediction, which can perform feature-aware, label embedding, and label-correlation aware prediction in a unified framework. Finally, our proposed model is evaluated on the currently largest public dataset worldwide, and achieves the challenge metric scores of 0.492, 0.495, and 0.490 on the 12-lead, 3-lead, and all-lead version ECGs, respectively. The performance of our approach outperforms other current state-of-the-art methods in the leave-one-dataset-out cross-validation setting, which demonstrates that our approach has great competitiveness in identifying a wider range of multi-label arrhythmias.
Y. D. Zhang, Z. Dong, S. H. Wang, X. Yu, X. Yao, Q. Zhou, H. Hu, M. Li, C. Jiménez-Mesa, J. Ramirez, et al., Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation, Inf. Fusion, vol. 64, pp. 149–187, 2020.
S. Wang, M. E. Celebi, Y. D. Zhang, X. Yu, S. Lu, X. Yao, Q. Zhou, M. G. Miguel, Y. Tian, J. M. Gorriz, et al., Advances in data preprocessing for biomedical data fusion: An overview of the methods, challenges, and prospects, Inf. Fusion, vol. 76, pp. 376–421, 2021.
U. Satija, B. Ramkumar, and M. Sabarimalai Manikandan, Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring, IEEE Internet Things J., vol. 4, no. 3, pp. 815–823, 2017.
L. Sun, Y. Wang, Z. Qu, and N. N. Xiong, BeatClass: A sustainable ECG classification system in IoT-based eHealth, IEEE Internet Things J., vol. 9, no. 10, pp. 7178–7195, 2022.
S. Asgari, A. Mehrnia, and M. Moussavi, Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine, Comput. Biol. Med., vol. 60, pp. 132–142, 2015.
R. S. Andersen, A. Peimankar, and S. Puthusserypady, A deep learning approach for real-time detection of atrial fibrillation, Expert Syst. Appl., vol. 115, pp. 465–473, 2019.
M. Arif, I. A. Malagore, and F. A. Afsar, Detection and Localization of Myocardial Infarction using K-nearest Neighbor Classifier, J. Med. Syst., vol. 36, no. 1, pp. 279–289, 2012.
R. K. Tripathy, A. Bhattacharyya, and R. B. Pachori, Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network, IEEE Sens. J., vol. 19, no. 23, pp. 11437–11448, 2019.
R. Ghorbani Afkhami, G. Azarnia, and M. Ali Tinati, Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals, Pattern Recognit. Lett., vol. 70, pp. 45–51, 2016.
L. Qin, Y. Xie, X. Liu, X. Yuan, and H. Wang, An end-to-end 12-leading electrocardiogram diagnosis system based on deformable convolutional neural network with good antinoise ability, IEEE Trans. Instrum. Meas., vol. 70, pp. 1–13, 2021.
A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, M. P. Turakhia, and A. Y. Ng, Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network, Nat. Med., vol. 25, no. 1, pp. 65–69, 2019.
S. Jiménez-Serrano, M. Rodrigo, C. J. Calvo, J. Millet, and F. Castells, From 12 to 1 ECG lead: Multiple cardiac condition detection mixing a hybrid machine learning approach with a one-versus-rest classification strategy, Physiol. Meas., vol. 43, no. 6, p. 064003, 2022.
Y. Li, Z. Zhang, F. Zhou, Y. Xing, J. Li, and C. Liu, Multi-label classification of arrhythmia for long-term electrocardiogram signals with feature learning, IEEE Trans. Instrum. Meas., vol. 70, pp. 1–11, 2021.
A. H. Ribeiro, M. H. Ribeiro, G. M. M. Paixão, D. M. Oliveira, P. R. Gomes, J. A. Canazart, M. P. S. Ferreira, C. R. Andersson, P. W. MacFarlane, W. Meira Jr, et al., Automatic diagnosis of the 12-lead ECG using a deep neural network, Nat. Commun., vol. 11, no. 1, p. 1760, 2020.
P. Xia, Z. He, Z. Bai, Y. Wang, X. Yu, F. Geng, L. Du, X. Chen, P. Wang, Y. Zhu, et al., A novel multi-scale 2D CNN with weighted focal loss for arrhythmias detection on varying-dimensional ECGs, Physiol. Meas., vol. 43, no. 10, p. 104003, 2022.
G. Tsoumakas and I. Katakis, Multi-label classification, Int. J. Data Warehous. Min., vol. 3, no. 3, pp. 1–13, 2007.
C. K. Yeh, W. C. Wu, W. J. Ko, and Y. C. F. Wang, Learning deep latent space for multi-label classification, Proc. AAAI Conf. Artif. Intell., vol. 31, no. 1, pp. 2838–2844, 2017.
Z. Wu, H. Li, X. Wang, Z. Wu, L. Zou, L. Xu, and M. Tan, New benchmark for household garbage image recognition, Tsinghua Science and Technology, vol. 27, no. 5, pp. 793–803, 2022.
S. Jiang, S. Fu, N. Lin, and Y. Fu, Pretrained models and evaluation data for the Khmer language, Tsinghua Science and Technology, vol. 27, no. 4, pp. 709–718, 2022.
M. B. Alkmim, R. M. Figueira, M. S. Marcolino, C. S. Cardoso, M. Pena de Abreu, L. R. Cunha, D. F. da Cunha, A. P. Antunes, A. G. de A Resende, E. Santos Resende, et al., Improving patient access to specialized health care: The Telehealth Network of Minas Gerais, Brazil, Bull. World Health Organ., vol. 90, no. 5, pp. 373–378, 2012.
M. L. Zhang and Z. H. Zhou, Multilabel neural networks with applications to functional genomics and text categorization, IEEE Trans. Knowl. Data Eng., vol. 18, no. 10, pp. 1338–1351, 2006.
M. A. Reyna, N. Sadr, E. A. Perez Alday, A. Gu, A. J. Shah, C. Robichaux, A. Bahrami Rad, A. Elola, S. Seyedi, S. Ansari, et al., Issues in the automated classification of multilead ECGs using heterogeneous labels and populations, Physiol. Meas., vol. 43, no. 8, p. 084001, 2022.
R. Bousseljot, D. Kreiseler, and A. Schnabel, Nutzung der EKG-signaldatenbank cardiodat der PTB über das Internet, Biomed. Tech., vol. 40, pp. 317–318, 2009.
P. Wagner, N. Strodthoff, R. D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, and T. Schaeffter, PTB-XL, a large publicly available electrocardiography dataset, Sci. Data, vol. 7, no. 1, p. 154, 2020.
J. Zheng, H. Chu, D. Struppa, J. Zhang, S. M. Yacoub, H. El-Askary, A. Chang, L. Ehwerhemuepha, I. Abudayyeh, A. Barrett, et al., Optimal multi-stage arrhythmia classification approach, Sci. Rep., vol. 10, no. 1, p. 2898, 2020.
J. Zheng, J. Zhang, S. Danioko, H. Yao, H. Guo, and C. Rakovski, A 12-lead electrocardiogram database for arrhythmia research covering more than 10000 patients, Sci. Data, vol. 7, no. 1, p. 48, 2020.
F. Liu, C. Liu, L. Zhao, X. Zhang, X. Wu, X. Xu, Y. Liu, C. Ma, S. Wei, Z. He, et al., An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection, J. Med. Imag. Health Inform., vol. 8, no. 7, pp. 1368–1373, 2018.
E. A. Perez Alday, A. Gu, A. J Shah, C. Robichaux, A. K. Ian Wong, C. Liu, F. Liu, A. Bahrami Rad, A. Elola, S. Seyedi, et al., Classification of 12-lead ECGs: The PhysioNet/computing in cardiology challenge 2020, Physiol. Meas., vol. 41, no. 12, p. 124003, 2021.
G. B. Moody and R. G. Mark, The impact of the MIT-BIH Arrhythmia Database, IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, 2001.
M. L. Zhang and Z. H. Zhou, A review on multi-label learning algorithms, IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819–1837, 2014.
Ľ. Antoni, E. Bruoth, P. Bugata, P. Bugata, D. Gajdoš, Š. Horvát, D. Hudák, V. Kmečová, R. Staňa, M. Staňková, et al., Automatic ECG classification and label quality in training data, Physiol. Meas., vol. 43, no. 6, p. 064008, 2022.
R. N. MacAlpin, Significance of abnormal Q waves in the electrocardiograms of adults less than 40 years old, Ann. Noninvasive Electrocardiol., vol. 11, no. 3, pp. 203–210, 2006.
F. D’Ascenzi, F. Anselmi, P. E. Adami, and A. Pelliccia, Interpretation of T-wave inversion in physiological and pathological conditions: Current state and future perspectives, Clin. Cardiol., vol. 43, no. 8, pp. 827–833, 2020.
H. Hotelling, Relations between two sets of variates, Biometrika, vol. 28, nos. 3 & 4, pp. 321–377, 1936.
J. R. Kettenring, Canonical analysis of several sets of variables, Biometrika, vol. 58, no. 3, pp. 433–451, 1971.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).