Journal Home > Volume 2 , Issue 2

A family of polyoxo(alkoxo)lanthanide cluster {Ln15} (Ln = Eu (1), Gd (2), Tb (3)) was successfully isolated via a simple hydrolysis reaction of lanthanide metal ions in the presence of tricine ligands. X-ray diffraction analyses revealed that {Ln15} displayed a wheel-like structure with a µ5-chloride anion as a template. Interestingly, each analog showed distinctive functions based on the different Ln(III) ions. Complexes 1 and 3 in the solid state emitted the characteristic fluorescence of Eu(III) or Tb(III). The fluorescence lifetimes of the 5D0 excited state for 1 and the 5D4 excited state for 3 were tested, and the values were 890 and 250 μs, respectively. Meanwhile, gadolinium analog 2 exhibited a magneto-caloric effect at ultralow temperatures with a maximum −ΔSm value of 29.9 J·kg−1·K−1 at 3 K and 7 T.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tricine-supported polyoxo(alkoxo)lanthanide cluster {Ln15} (Ln = Eu, Gd, Tb) with magnetic refrigerant and fluorescent properties

Show Author's information Peng-Fei SunXiao-Nan ZhangCai-Hong FanWei-Peng Chen ( )Yan-Zhen Zheng ( )
Frontier Institute of Science and Technology, State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi’an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an 710054, China

Abstract

A family of polyoxo(alkoxo)lanthanide cluster {Ln15} (Ln = Eu (1), Gd (2), Tb (3)) was successfully isolated via a simple hydrolysis reaction of lanthanide metal ions in the presence of tricine ligands. X-ray diffraction analyses revealed that {Ln15} displayed a wheel-like structure with a µ5-chloride anion as a template. Interestingly, each analog showed distinctive functions based on the different Ln(III) ions. Complexes 1 and 3 in the solid state emitted the characteristic fluorescence of Eu(III) or Tb(III). The fluorescence lifetimes of the 5D0 excited state for 1 and the 5D4 excited state for 3 were tested, and the values were 890 and 250 μs, respectively. Meanwhile, gadolinium analog 2 exhibited a magneto-caloric effect at ultralow temperatures with a maximum −ΔSm value of 29.9 J·kg−1·K−1 at 3 K and 7 T.

Keywords: luminescence, polymetallic complexes, lanthanide elements, magnetic refrigeration, magnetic exchange

References(41)

[1]

Chen, L.; Chen, W. L.; Wang, X. L.; Li, Y. G.; Su, Z. M.; Wang, E. B. Polyoxometalates in dye-sensitized solar cells. Chem. Soc. Rev. 2019, 48, 260–284.

[2]

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

[3]

Patel, A.; Sadasivan, R. Modified Mn substituted POMs: Synthetic strategies, structural diversity to applications. Prog. Mater. Sci. 2021, 118, 100759.

[4]

Moors, M.; Warneke, J.; López, X.; de Graaf, C.; Abel, B.; Monakhov, K. Y. Insights from adsorption and electron modification studies of polyoxometalates on surfaces for molecular memory applications. Acc. Chem. Res. 2021, 54, 3377–3389.

[5]

Zhang, M. M.; Dong, X. Y.; Wang, Y. J.; Zang, S. Q.; Mak, T. C. W. Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands. Coord. Chem. Rev. 2022, 453, 214315.

[6]

Yin, B. Q.; Luo, Z. X. Coinage metal clusters: From superatom chemistry to genetic materials. Coord. Chem. Rev. 2021, 429, 213643.

[7]

Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

[8]

Huang, W. M.; Chen, W. M.; Bai, Q. X.; Zhang, Z.; Feng, M.; Zheng, Z. P. Anion-guided stepwise assembly of high-nuclearity lanthanide hydroxide clusters. Angew. Chem., Int. Ed. 2022, 61, e202205385.

[9]

Huang, W. M.; Liu, Q. X.; Chen, W. M.; Feng, M.; Zheng, Z. P. Recent advances in the catalytic applications of lanthanide-oxo clusters. Magnetochemistry 2021, 7, 161.

[10]

Zheng, X. Y.; Xie, J.; Kong, X. J.; Long, L. S.; Zheng, L. S. Recent advances in the assembly of high-nuclearity lanthanide clusters. Coord. Chem. Rev. 2019, 378, 222–236.

[11]

Zheng, Y. Z.; Zhou, G. J.; Zheng, Z. P.; Winpenny, R. E. P. Molecule-based magnetic coolers. Chem. Soc. Rev. 2014, 43, 1462–1475.

[12]

Liu, J. L.; Chen, Y. C.; Guo, F. S.; Tong, M. L. Recent advances in the design of magnetic molecules for use as cryogenic magnetic coolants. Coord. Chem. Rev. 2014, 281, 26–49.

[13]

Liu, K.; Shi, W.; Cheng, P. Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d-4f discrete complexes. Coord. Chem. Rev. 2015, 289–290, 74–122.

[14]

Marin, R.; Brunet, G.; Murugesu, M. Shining new light on multifunctional lanthanide single-molecule magnets. Angew. Chem., Int. Ed. 2021, 60, 1728–1746.

[15]
Yang, X. P.; Wang, S. Q.; Wang, C. R.; Huang, S. M. ; Jones, R. A. Construction and luminescence properties of 4f and d-4f clusters with salen-type schiff base ligands. In Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials; Zheng, Z. P., Ed.; Springer: Berlin Heidelberg, 2017; pp 155–187.
DOI
[16]

Yang, X. P.; Schipper, D.; Jones, R. A.; Lytwak, L. A.; Holliday, B. J.; Huang, S. M. Anion-dependent self-assembly of near-infrared luminescent 24- and 32-metal Cd-Ln complexes with drum-like architectures. J. Am. Chem. Soc. 2013, 135, 8468–8471.

[17]

Gálico, D. A.; Ovens, J. S.; Murugesu, M. NIR-to-NIR emission on a water-soluble {Er6} and {Er3Yb3} nanosized molecular wheel. Nanoscale 2020, 12, 11435–11439.

[18]

Gálico, D. A. ; Kitos, A. A. ; Ovens, J. S. ; Sigoli, F. A. ; Murugesu, M. Lanthanide-based molecular cluster-aggregates: Optical barcoding and white-light emission with nanosized {Ln20} compounds. Angew. Chem., Int. Ed. 2021, 60, 6130–6136.

[19]

Chang, L. X.; Xiong, G.; Wang, L.; Cheng, P.; Zhao, B. A 24-Gd nanocapsule with a large magnetocaloric effect. Chem. Commun. 2013, 49, 1055–1057.

[20]

Wu, M. Y.; Jiang, F. L.; Kong, X. J.; Yuan, D. Q.; Long, L. S.; Al-Thabaiti, S. A.; Hong, M. C. Two polymeric 36-metal pure lanthanide nanosize clusters. Chem. Sci. 2013, 4, 3104–3109.

[21]

Guo, F. S.; Chen, Y. C.; Mao, L. L.; Lin, W. Q.; Leng, J. D.; Tarasenko, R.; Orendáč, M.; Prokleška, J.; Sechovský, V.; Tong, M. L. Anion-templated assembly and magnetocaloric properties of a nanoscale {Gd38} cage versus a {Gd48} barrel. Chem.—Eur. J. 2013, 19, 14876–14885.

[22]

Che, Z. W.; Chen, J. T.; Wang, T. T.; Yan, H.; Zhou, T. D.; Guo, R.; Sun, W. B. Wheel-like Gd42 polynuclear complexes with significant magnetocaloric effect. CrystEngComm 2022, 24, 3363–3368.

[23]

Dong, J.; Cui, P.; Shi, P. F.; Cheng, P.; Zhao, B. Ultrastrong alkali-resisting lanthanide-zeolites assembled by [Ln60] nanocages. J. Am. Chem. Soc. 2015, 137, 15988–15991.

[24]

Qin, L.; Yu, Y. Z.; Liao, P. Q.; Xue, W.; Zheng, Z. P.; Chen, X. M.; Zheng, Y. Z. A “molecular water pipe”: A giant tubular cluster {Dy72} exhibits fast proton transport and slow magnetic relaxation. Adv. Mater. 2016, 28, 10772–10779.

[25]

Peng, J. B.; Kong, X. J.; Zhang, Q. C.; Orendáč, M.; Prokleška, J.; Ren, Y. P.; Long, L. S.; Zheng, Z. P.; Zheng, L. S. Beauty, symmetry, and magnetocaloric effect-four-shell keplerates with 104 lanthanide atoms. J. Am. Chem. Soc. 2014, 136, 17938–17941.

[26]

Zheng, X. Y.; Jiang, Y. H.; Zhuang, G. L.; Liu, D. P.; Liao, H. G.; Kong, X. J.; Long, L. S.; Zheng, L. S. A gigantic molecular wheel of {Gd140}: A new member of the molecular wheel family. J. Am. Chem. Soc. 2017, 139, 18178–18181.

[27]

Papatriantafyllopoulou, C.; Moushi, E. E.; Christou, G.; Tasiopoulos, A. J. Filling the gap between the quantum and classical worlds of nanoscale magnetism: Giant molecular aggregates based on paramagnetic 3d metal ions. Chem. Soc. Rev. 2016, 45, 1597–1628.

[28]
Zheng, X. Y. ; Kong, X. J. ; Long, L. S. Synthesis and structures of lanthanide-transition metal clusters. In Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials; Zheng, Z. P., Ed.; Springer: Berlin Heidelberg, 2017; pp 51–96.
DOI
[29]

Qin, L.; Zhou, G. J.; Yu, Y. Z.; Nojiri, H.; Schröder, C.; Winpenny, R. E. P.; Zheng, Y. Z. Topological self-assembly of highly symmetric lanthanide clusters: A magnetic study of exchange-coupling “fingerprints” in giant gadolinium(III) cages. J. Am. Chem. Soc. 2017, 139, 16405–16411.

[30]

Crans, D. C.; Ehde, P. M.; Shin, P. K.; Pettersson, L. Structural and kinetic characterization of simple complexes as models for vanadate-protein interactions. J. Am. Chem. Soc. 1991, 113, 3728–3736.

[31]

Graham, K.; Ferguson, A.; Douglas, F. J.; Thomas, L. H.; Murrie, M. Access to an unusual Fe9 core topology from the initial use of tricine in iron(III) cluster chemistry. Dalton Trans. 2011, 40, 3125–3127.

[32]

Ahmed, I. T. Divalent metal ion ternary complexes of tricine and mercaptobenzazoles. Synth. React. Inorg. Met. -Org. Chem. 2003, 33, 547–564.

[33]

El-Roudi, O. M.; Abd Alla, E. M.; Ibrahim, S. A. Potentiometric studies on the binary complexes of N-[tris(hydroxymethyl)methyl]glycine with Th4+, Ce3+, La3+, and UO22+ and medium effects on a Th-tricine binary complex. J. Chem. Eng. Data 1997, 42, 609–613.

[34]

Gálico, D. A.; Ovens, J. S.; Sigoli, F. A.; Murugesu, M. Room-temperature upconversion in a nanosized {Ln15} molecular cluster-aggregate. ACS Nano 2021, 15, 5580–5585.

[35]

Wang, R. Y.; Selby, H. D.; Liu, H.; Carducci, M. D.; Jin, T. Z.; Zheng, Z. P.; Anthis, J. W.; Staples, R. J. Halide-templated assembly of polynuclear lanthanide-hydroxo complexes. Inorg. Chem. 2002, 41, 278–286.

[36]

Huang, W. M.; Zhang, Z. H.; Wu, Y. L.; Chen, W. M.; Rotsch, D. A.; Messerle, L.; Zheng, Z. P. A systematic study of halide-template effects in the assembly of lanthanide hydroxide cluster complexes with histidine. Inorg. Chem. Front. 2021, 8, 26–34.

[37]

Zhou, G. J.; Chen, W. P.; Yu, Y. Z.; Qin, L.; Han, T.; Zheng, Y. Z. Filling the missing links of M3n prototype 3d-4f and 4f cyclic coordination cages: Syntheses, structures, and magnetic properties of the Ni10Ln5 and the Er3n wheels. Inorg. Chem. 2017, 56, 12821–12829.

[38]

Li, Y. L.; Wang, H. L.; Zhu, Z. H.; Li, J.; Zou, H. H.; Liang, F. P. A series of high-nuclear gadolinium cluster aggregates with a magnetocaloric effect constructed through two-component manipulation. Inorg. Chem. 2021, 60, 16794–16802.

[39]

Gaft, M.; Reisfeld, R.; Panczer, G.; Shoval, S.; Champagnon, B.; Boulon, G. Eu3+ luminescence in high-symmetry sites of natural apatite. J. Lumin 1997, 72-74, 572–574.

[40]

Xia, Z. G.; Liu, R. S. Tunable blue-green color emission and energy transfer of Ca2Al3O6F: Ce3+, Tb3+ phosphors for near-uv white LEDs. J. Phys. Chem. C 2012, 116, 15604–15609.

[41]

Yguerabide, J.; Burton, M. Luminescence decay times: Concentration effects. J. Chem. Phys. 1962, 37, 1757–1774.

File
POM_0026_ESM.pdf (1.8 MB)
POM_0026_ESM_Gd15.cif (3.1 MB)
POM_0026_ESM_checkcif.pdf (135.3 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 November 2022
Revised: 01 January 2023
Accepted: 13 February 2023
Published: 12 March 2023
Issue date: June 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21971203), Special Support Plan of Shaanxi Province for Young Top-notch Talent, the Instrument Analysis Center of Xi’an Jiaotong University for assistance, and Fundamental Research Funds for Central Universities.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return