AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Electrocatalysis informatics assisted design of highly disordered ternary alloy aerogel for efficient methanol oxidation

Yichi Guan1,2,§Jingxiu Liu1,2,§Pengcheng Liu1,2,§Jin Zhang1( )Yanyi Liu2Jingwen Zhang3Zhonghong Xia4Xijun Liu3( )Jia He2( )
School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
Institute for School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China

§ Yichi Guan, Jingxiu Liu, and Pengcheng Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The rational design of advanced methanol oxidation reaction (MOR) electrocatalysts can significantly enhance the catalytic activity and performance of direct methanol fuel cells (DMFCs). Herein, the electrocatalysis informatics-assisted design electrocatalysts for MOR is firstly conducted by combining machine learning based on 616 experimental data points with first-principles calculations. Guided by this theoretical insight, a highly disordered PtRuPd alloy aerogel is prepared via a facile one-pot synthetic strategy. The obtained electrocatalyst demonstrates excellent mass activity of 2.42 A·mgPt−1 and specific activity of 7.13 mA·cm−2 for MOR, which is considerably higher than that of most Pt-based catalysts. The self-supported ultrathin anode catalyst layer (~6.3 μm) integrated into a membrane electrode assembly exhibits the mass-specific power density of 92.9 W·gPt−1 at 65 °C for DMFC operation, surpassing that of recently reported Pt-based catalysts. This work offers a promising approach to exploring a digitalization and intelligent cross-scale design route for MOR electrocatalysts.

Electronic Supplementary Material

Download File(s)
0167_ESM.pdf (2.8 MB)

References

[1]

Zhang, Z. Q.; Liu, J. P.; Wang, J.; Wang, Q.; Wang, Y. H.; Wang, K.; Wang, Z.; Gu, M.; Tang, Z. H.; Lim, J. et al. Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 2021, 12, 5235.

[2]

Wei, T. R.; Meng, G.; Zhou, Y. H.; Wang, Z. F.; Liu, Q.; Luo, J.; Liu, X. J. Amorphous Fe-Co oxide as an active and durable bifunctional catalyst for the urea-assisted H2 evolution reaction in seawater. Chem. Commun. 2023, 59, 9992–9995.

[3]

Li, W. J.; Wang, Y. Y.; Xu, L.; Tang, Y. L.; Wu, X. Y.; Liu, J. H. Thermodynamic evaluation of electricity and hydrogen cogeneration from solar energy and fossil fuels. Energy Convers. Manage. 2022, 256, 115344.

[4]

Zhu, J. X.; Xia, L. X.; Yu, R. H.; Lu, R. H.; Li, J. T.; He, R. H.; Wu, Y. C.; Zhang, W.; Hong, X. F.; Chen, W. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 2022, 144, 15529–15538.

[5]

Li, Z. H.; Zeng, H.; Zeng, G.; Ru, C. Y.; Li, G. H.; Yan, W. F.; Shi, Z.; Feng, S. H. Multivariate synergistic flexible metal-organic frameworks with superproton conductivity for direct methanol fuel cells. Angew. Chem., Int. Ed. 2021, 133, 26781–26785.

[6]

Meng, F. X.; Dai, C. C.; Liu, Z.; Luo, S. Z.; Ge, J. J.; Duan, Y.; Chen, G.; Wei, C.; Chen, R. R.; Wang, J. R. et al. Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. eScience 2022, 2, 87–94.

[7]

Alias, M. S.; Kamarudin, S. K.; Zainoodin, A. M.; Masdar, M. S. Active direct methanol fuel cell: An overview. Int. J. Hydrogen Energy 2020, 45, 19620–19641.

[8]

Fadzillah, D. M.; Kamarudin, S. K.; Zainoodin, M. A.; Masdar, M. S. Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview. Int. J. Hydrogen Energy 2019, 44, 3031–3054.

[9]

Tong, Y. Y.; Yan, X.; Liang, J.; Dou, S. X. Metal-based electrocatalysts for methanol electro-oxidation: Progress, opportunities, and challenges. Small 2021, 17, 1904126.

[10]

Zhang, L. L.; Lu, P. P.; Yin, M. M.; Li, R. N.; Wang, B.; Ma, X. D.; Jiao, M. G.; Ma, W.; Zhou, Z. Black phosphorus nanodots-modified Pt/C electrocatalyst for methanol-tolerant oxygen reduction in direct methanol fuel cells. Rare Met. 2025, 44, 1767–1776.

[11]

Yuda, A.; Ashok, A.; Kumar, A. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. Catal. Rev. 2022, 64, 126–228.

[12]

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

[13]

Cai, Z. C.; Kamiko, M.; Yamada, I.; Yagi, S. PtCo3 nanoparticle-encapsulated carbon nanotubes as active catalysts for methanol fuel cell anodes. ACS Appl. Nano Mater. 2021, 4, 1445–1454.

[14]

Cui, Z. M.; Chen, H.; Zhao, M. T.; Marshall, D.; Yu, Y. C.; Abruña, H.; DiSalvo, F. J. Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts. J. Am. Chem. Soc. 2014, 136, 10206–10209.

[15]

Zhang, L.; Doyle-Davis, K.; Sun, X. L. Pt-based electrocatalysts with high atom utilization efficiency: From nanostructures to single atoms. Energy Environ. Sci. 2019, 12, 492–517.

[16]

Charalampopoulos, G.; Daletou, M. K. Comparative development and evaluation of Fe-N-C electrocatalysts for the oxygen reduction reaction: The effect of pyrolysis and iron-bipyridine structures. Mater. Rep.: Energy 2025, 1, 100328.

[17]

Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta 2002, 47, 3663–3674.

[18]
Zhou, T. T.; Dong, K. Y.; Zheng, Z.; Yuan, Q. Coupling of alloying and interface effects in dendritic Au-doped PtPd alloy/dumbbell-like bismuth telluride heterostructures for ethanol and methanol electrooxidation. Rare Met., in press, DOI: 10.1007/s12598-024-03145-2.
[19]

Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

[20]

Zhi, G.; Wang, W. X.; Zhou, Y.; Feng, L. G. ZIF-67-derived CoP/NC effectively supported Pt nanoparticles for methanol oxidation reaction. Nanoscale 2023, 15, 2948–2953.

[21]

Zhang, S.; Yin, L. L.; Liu, Q.; Hai, G. T.; Du, Y. P. Lanthanide-induced ligand effect to regulate the electronic structure of platinum-lanthanide nanoalloys for efficient methanol oxidation. ACS Nano 2024, 18, 25754–25764.

[22]

Xin, H. L. Catalyst design with machine learning. Nat. Energy 2022, 7, 790–791.

[23]

Abed, J.; Heras-Domingo, J.; Sanspeur, R. Y.; Luo, M. C.; Alnoush, W.; Meira, D. M.; Wang, H.; Wang, J.; Zhou, J. G.; Zhou, D. J. et al. Pourbaix machine learning framework identifies acidic water oxidation catalysts exhibiting suppressed ruthenium dissolution. J. Am. Chem. Soc. 2024, 146, 15740–15750.

[24]

Zavyalova, U.; Holena, M.; Schlögl, R.; Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 2011, 3, 1935–1947.

[25]

Fan, X. Y.; Chen, L. T.; Huang, D. L.; Tian, Y.; Zhang, X.; Jiao, M. G.; Zhou, Z. From single metals to high-entropy alloys: How machine learning accelerates the development of metal electrocatalysts. Adv. Funct. Mater. 2024, 34, 2401887.

[26]

Ding, R.; Chen, J. H.; Chen, Y. X.; Liu, J. G.; Bando, Y.; Wang, X. B. Unlocking the potential: Machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem. Soc. Rev. 2024, 53, 11390–11461.

[27]

Sun, H.; Li, Y. Z.; Gao, L. Y.; Chang, M. Y.; Jin, X. R.; Li, B. Y.; Xu, Q. Z.; Liu, W.; Zhou, M. Y.; Sun, X. M. High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine learning. J. Energy Chem. 2023, 81, 349–357.

[28]

Chattoraj, J.; Hamadicharef, B.; Syadzali, Y. N. A.; Limantara, G. O.; Zeng, Y. Z.; Poh, C. K.; Chen, L. W.; Tan, T. L. Preparation of a water-gas shift database to evaluate the performance of noble metal catalysts using theory-guided machine learning. ACS Catal. 2023, 13, 14334–14345.

[29]

Ding, D. J.; Huang, J. Z.; Deng, X. L.; Fu, K. Recent advances and perspectives of nanostructured amorphous alloys in electrochemical water electrolysis. Energy Fuels 2021, 35, 15472–15488.

[30]

Li, X. Y.; Cai, W. Z.; Li, D. S.; Xu, J.; Tao, H. B.; Liu, B. Amorphous alloys for electrocatalysis: The significant role of the amorphous alloy structure. Nano Res. 2023, 16, 4277–4288.

[31]

Sun, B. X.; Li, X. G.; Zheng, J. Hydrogen generation from NaBH4 for portable proton exchange membrane fuel cell. Mater. Rep.: Energy 2024, 4, 100248.

[32]

Huang, K.; Cao, X.; Lu, Y.; Xiu, M. Z.; Cui, K.; Zhang, B. W.; Shi, W. C.; Xia, J. Y.; Woods, L. M.; Zhu, S. Y. et al. Lattice-disordered high-entropy alloy engineered by thermal dezincification for improved catalytic hydrogen evolution reaction. Adv. Mater. 2024, 36, 2304867.

[33]

Huang, X. F.; Wu, Z. N.; Zhang, B.; Yang, G. X.; Wang, H. F.; Wang, H. J.; Cao, Y. H.; Peng, F.; Li, S.; Yu, H. Formation of disordered high-entropy-alloy nanoparticles for highly efficient hydrogen electrocatalysis. Small 2024, 20, 2311631.

[34]

Yang, J. P.; Zhang, F. Z.; Chen, J. Structural design and application of fiber-based electrocatalytic materials. China Powder Sci. Technol. 2024, 30, 161–170.

[35]

Mai, H. X.; Le, T. C.; Chen, D. H.; Winkler, D. A.; Caruso, R. A. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 2022, 122, 13478–13515.

[36]

Ding, R.; Wang, R.; Ding, Y. Q.; Yin, W. J.; Liu, Y. D.; Li, J.; Liu, J. G. Designing AI-aided analysis and prediction models for nonprecious metal electrocatalyst-based proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 19175–19183.

[37]

Chun, H.; Lee, E.; Nam, K.; Jang, J. H.; Kyoung, W.; Noh, S. H.; Han, B. First-principle-data-integrated machine-learning approach for high-throughput searching of ternary electrocatalyst toward oxygen reduction reaction. Chem Catal. 2021, 1, 855–869.

[38]

Suzuki, K.; Toyao, T.; Maeno, Z.; Takakusagi, S.; Shimizu, K. I.; Takigawa, I. Statistical analysis and discovery of heterogeneous catalysts based on machine learning from diverse published data. ChemCatChem 2019, 11, 4537–4547.

[39]

Zhang, R.; Zhao, Y. Preparation and electrocatalysis application of pure metallic aerogel: A review. Catalysts 2020, 10, 1376.

[40]

Liu, W.; Rodriguez, P.; Borchardt, L.; Foelske, A.; Yuan, J. P.; Herrmann, A. K.; Geiger, D.; Zheng, Z. K.; Kaskel, S.; Gaponik, N. et al. Bimetallic aerogels: High-performance electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 9849–9852.

[41]

Du, R.; Jin, X. Y.; Hübner, R.; Fan, X. L.; Hu, Y.; Eychmüller, A. Engineering self-supported noble metal foams toward electrocatalysis and beyond. Adv. Energy Mater. 2020, 10, 1901945.

[42]

Du, R.; Wang, J. Y.; Wang, Y.; Hübner, R.; Fan, X. L.; Senkovska, I.; Hu, Y.; Kaskel, S.; Eychmüller, A. Unveiling reductant chemistry in fabricating noble metal aerogels for superior oxygen evolution and ethanol oxidation. Nat. Commun. 2020, 11, 1590.

[43]

Cui, Q.; Li, Y.; Sun, X. Y.; Weng, B. B.; Hübner, R.; Cui, Y.; Zhang, Q. R.; Luo, Y. J.; Zhang, L. N.; Du, R. Manipulating multimetallic effects: Programming size-tailored metal aerogels as self-standing electrocatalysts. Matter 2025, 8, 101905.

[44]

Wang, W.; Jing, W. L.; Wang, F. X.; Liu, S. J.; Liu, X. Y.; Lei, Z. Q. Amorphous ultra-dispersed Pt clusters supported on nitrogen functionalized carbon: A superior electrocatalyst for glycerol electrooxidation. J. Power Sources 2018, 399, 357–362.

[45]

Li, X.; Yao, K. X.; Zhao, F. L.; Yang, X. T.; Li, J. W.; Li, Y. F.; Yuan, Q. Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device. Nano Res. 2022, 15, 6036–6044.

[46]

Leng, Z. H.; Wu, X. Q.; Li, X.; Li, J. J.; Qian, N. K.; Ji, L.; Yang, D. R.; Zhang, H. PdPtRu nanocages with tunable compositions for boosting the methanol oxidation reaction. Nanoscale Adv. 2022, 4, 1158–1163.

[47]

Zhao, F. L.; Yuan, Q.; Luo, B.; Li, C. Z.; Yang, F.; Yang, X. T.; Zhou, Z. Y. Surface composition-tunable octahedral PtCu nanoalloys advance the electrocatalytic performance on methanol and ethanol oxidation. Sci. China Mater. 2019, 62, 1877–1887.

[48]

Zhao, P. C.; Cao, Q. G.; Yi, W.; Hao, X. D.; Li, J. G.; Zhang, B. S.; Huang, L.; Huang, Y. J.; Jiang, Y. B.; Xu, B. S. et al. Facile and general method to synthesize Pt-based high-entropy-alloy nanoparticles. ACS Nano 2022, 16, 14017–14028.

[49]

Wang, D. D.; Chen, Z. W.; Huang, Y. C.; Li, W.; Wang, J.; Lu, Z. L.; Gu, K. Z.; Wang, T. H.; Wu, Y. J.; Chen, C. et al. Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Sci. China Mater. 2021, 64, 2454–2466.

[50]

Wan, Y.; Wei, W. R.; Ding, S. Q.; Wu, L.; Qin, H. Y.; Yuan, X. X. A multi-site synergistic effect in high-entropy alloy for efficient hydrogen evolution. Adv. Funct. Mater. 2025, 35, 2414554.

[51]

Zhang, L. J.; Cai, W. W.; Bao, N. Z.; Yang, H. Implanting an electron donor to enlarge the d–p hybridization of high-entropy (Oxy) hydroxide: A novel design to boost oxygen evolution. Adv. Mater. 2022, 34, 2110511.

[52]

Tang, T. M.; Han, J. Y.; Wang, Z. L.; Niu, X. D.; Guan, J. Q. Diatomic Fe-Co catalysts synergistically catalyze oxygen evolution reaction. Nano Res. 2024, 17, 3794–3800.

[53]

Shang, C. S.; Guo, Y. X.; Wang, E. K. Facile fabrication of PdRuPt nanowire networks with tunable compositions as efficient methanol electrooxidation catalysts. Nano Res. 2018, 11, 4348–4355.

[54]

Yang, Y.; Luo, L. M.; Zhang, R. H.; Du, J. J.; Shen, P. C.; Dai, Z. X.; Sun, C. H.; Zhou, X. W. Free-standing ternary PtPdRu nanocatalysts with enhanced activity and durability for methanol electrooxidation. Electrochim. Acta 2016, 222, 1094–1102.

[55]

Eid, K.; Ahmad, Y. H.; Yu, H. J.; Li, Y. H.; Li, X. N.; AlQaradawi, S. Y.; Wang, H. J.; Wang, L. Rational one-step synthesis of porous PtPdRu nanodendrites for ethanol oxidation reaction with a superior tolerance for CO-poisoning. Nanoscale 2017, 9, 18881–18889.

[56]

Zhang, Q. W.; He, J.; Guo, R. J.; Zhao, Y.; Zhang, W. Q.; Zhang, W.; Pang, S. S.; Ding, Y. Assembling highly coordinated Pt sites on nanoporous gold for efficient oxygen electroreduction. ACS Appl. Mater. Interfaces 2018, 10, 39705–39712.

[57]

Zhang, W. Q.; He, J.; Liu, S. Y.; Niu, W. X.; Liu, P.; Zhao, Y.; Pang, F. J.; Xi, W.; Chen, M. W.; Zhang, W. et al. Atomic origins of high electrochemical CO2 reduction efficiency on nanoporous gold. Nanoscale 2018, 10, 8372–8376.

[58]

Zhang, K.; Guo, R. J.; Pang, F. J.; He, J.; Zhang, W. Q. Low-coordinated gold atoms boost electrochemical nitrogen reduction reaction under ambient conditions. ACS Sustainable Chem. Eng. 2019, 7, 10214–10220.

[59]

del Colle, V.; Nunes, L. M. S.; Angelucci, C. A.; Feliu, J. M.; Tremiliosi-Filho, G. The influence of stepped Pt[n(111)×(110)] electrodes towards glycerol electrooxidation: Electrochemical and FTIR studies. Electrochim. Acta 2020, 346, 136187.

[60]

Zhu, R. Y.; Yu, Y. D.; Yu, R. Q.; Lai, J. P.; Jung, J. C. Y.; Zhang, S. M.; Zhao, Y. F.; Zhang, J. J.; Xia, Z. H. PtIrM (M=Ni, Co) jagged nanowires for efficient methanol oxidation electrocatalysis. J. Colloid Interface Sci. 2022, 625, 493–501.

[61]

Zhang, Y.; Shu, G. Q.; Shang, Z. T.; Ma, K.; Song, L.; Wang, C.; Zhou, C. A.; Yue, H. R. Electronic and coordination effect of PtPd nanoflower alloys for the methanol electrooxidation reaction. ACS Sustainable Chem. Eng. 2023, 11, 8958–8967.

[62]

Liu, X. J.; Chen, M. Y.; Ma, J. J.; Liang, J. Q.; Li, C. S.; Chen, C. J.; He, H. B. Advances in synthesis strategies of carbon-based single-atom catalysts and their electrochemical applications. China Powder Sci. Technol. 2024, 30, 35–46.

[63]

Ji, Y. Q.; Yu, Z. H.; Yan, L. G.; Song, W. Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Sci. Technol. 2023, 29, 100–107.

[64]

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

[65]

Deng, X.; Huang, C.; Pei, X. D.; Hu, B.; Zhou, W. Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review. Int. J. Hydrogen Energy 2022, 47, 1529–1542.

[66]

Liu, W. J.; Zhou, M.; Zhang, J. W.; Liu, W. X.; Qin, D. D.; Liu, Q.; Hu, G. Z.; Liu, X. J. Construction of a CoP/MnP/Cu3P heterojunction for efficient methanol oxidation-assisted seawater splitting. Mater. Chem. Front. 2025, 9, 953–964.

[67]

Shih, A. J.; Monteiro, M. C. O.; Dattila, F.; Pavesi, D.; Philips, M. ; da Silva, A. H. M.; Vos, R. E.; Ojha, K.; Park, S.; van der Heijden, O. et al. Water electrolysis. Nat. Rev. Methods Primers 2022, 2, 84.

[68]

Yin, R. L.; Wang, Z. W.; Zhang, J.; Liu, W. X.; He, J.; Hu, G. Z.; Liu, X. J. Tunable NiSe–Ni3Se2 heterojunction for energy-efficient hydrogen production by coupling urea degradation. Small Methods 2025, n/a, 2401976.

[69]

Xu, H. C.; Xin, G. R.; Hu, W. X.; Zhang, Z. X.; Si, C. L.; Chen, J. G.; Lu, L. F.; Peng, Y. T.; Li, X. Y. Single-atoms Ru/NiFe layered double hydroxide electrocatalyst: Efficient for oxidation of selective oxidation of 5-hydroxymethylfurfural and oxygen evolution reaction. Appl. Catal. B: Environ. 2023, 339, 123157.

[70]

Zhou, X.; Jin, H. L.; Ma, Z. C.; Li, N.; Li, G.; Zhang, T.; Lu, P.; Gong, X. Z. Biochar sacrificial anode assisted water electrolysis for hydrogen production. Int. J. Hydrogen Energy 2022, 47, 36482–36492.

[71]

Yang, M. S.; Meng, G.; Li, H. Y.; Wei, T. R.; Liu, Q.; He, J.; Feng, L. G.; Sun, X. P.; Liu, X. J. Bifunctional bimetallic oxide nanowires for high-efficiency electrosynthesis of 2,5-furandicarboxylic acid and ammonia. J. Colloid Interface Sci. 2023, 652, 155–163.

[72]

Li, L.; Zhang, L. C.; Gou, L. C.; Wei, S. Q.; Hou, X. D.; Wu, L. High-performance methanol electrolysis towards energy-saving hydrogen production: Using Cu2O–Cu decorated Ni2P nanoarray as bifunctional monolithic catalyst. Chem. Eng. J. 2023, 454, 140292.

[73]

Amano, F.; Tsushiro, K. Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding. Energy Mater. 2024, 4, 400006.

[74]

Yang, C. X.; Cai, Z. W.; Liang, J.; Dong, K.; Li, Z. X.; Sun, H.; Sun, S. J.; Zheng, D. D.; Zhang, H.; Luo, Y. S. et al. Surface-derived phosphate layer on NiFe-layered double hydroxide realizes stable seawater oxidation at the current density of 1 A·cm–2. Nano Res. 2024, 17, 5786–5794.

[75]

Budi, S.; Pathoni, A. S.; Auliya, A.; Winarsih, S.; Fauzi, M. H.; Yusmaniar; Suliasih, B. A.; Syafei, H. Efficient stabilizing agent-free synthesis of gold nanoparticles via square-wave pulse deposition for enhanced catalytic performance in ethanol electrooxidation. Mater. Rep.: Energy 2024, 4, 100294.

[76]

Chen, F.; Sun, Y. X.; Li, H. Y.; Li, C. J. Review and development of anode electrocatalyst carriers for direct methanol fuel cell. Energy Technol. 2022, 10, 2101086.

[77]

Wei, T. C.; Zhou, J.; An, X. Q. Recent advances in single-atom catalysts (SACs) for photocatalytic applications. Mater. Rep.: Energy 2024, 4, 100285.

[78]

Forrester, A. I. J.; Keane, A. J. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79.

[79]

Schmidt, J.; Marques, M. R. G.; Botti, S.; Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 2019, 5, 83.

[80]

Auer, P.; Cesa-Bianchi, N.; Freund, Y.; Schapire, R. E. The nonstochastic multiarmed bandit problem. SIAM J. Comput. 2002, 32, 48–77.

[81]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558.

[82]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

[83]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

Nano Research Energy
Cite this article:
Guan Y, Liu J, Liu P, et al. Electrocatalysis informatics assisted design of highly disordered ternary alloy aerogel for efficient methanol oxidation. Nano Research Energy, 2025, https://doi.org/10.26599/NRE.2025.9120167

179

Views

49

Downloads

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 17 February 2025
Revised: 02 April 2025
Accepted: 09 April 2025
Published: 07 May 2025
© The Author(s) 2025. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return