Journal Home > Volume 3 , Issue 1

Perovskite solar cells (PSCs) have exhibited impressive performance, achieving a power conversion efficiency (PCE) of 26.1%. However, the water-soluble and toxic nature of lead (Pb) in PSCs hinders their industrialization. Pb chemisorption has emerged as a promising approach to address this issue to prevent Pb leakage and ensure long-term stability. This perspective provides a comprehensive overview of recent advancements in Pb chemisorption in PSCs and discusses the prospects for future developments and challenges in this field.


menu
Abstract
Full text
Outline
About this article

Lead chemisorption: Paving the last step for industrial perovskite solar cells

Show Author's information Pengfei Wu1,2Jin Hyuck Heo3Fei Zhang1,2( )
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China
Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 17104, Republic of Korea

Abstract

Perovskite solar cells (PSCs) have exhibited impressive performance, achieving a power conversion efficiency (PCE) of 26.1%. However, the water-soluble and toxic nature of lead (Pb) in PSCs hinders their industrialization. Pb chemisorption has emerged as a promising approach to address this issue to prevent Pb leakage and ensure long-term stability. This perspective provides a comprehensive overview of recent advancements in Pb chemisorption in PSCs and discusses the prospects for future developments and challenges in this field.

Keywords: perovskite, solar cells, chemisorption, lead toxicity

References(34)

[1]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[2]
National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart[Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed July 15, 2023).
[3]

Zhang, F.; Park, S. Y.; Yao, C. L.; Lu, H. P.; Dunfield, S. P.; Xiao, C. X.; Uličná, S.; Zhao, X. M.; Du Hill, L.; Chen, X. H. et al. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 2022, 375, 71–76.

[4]

Wu, P. F.; Wang, S. R.; Heo, J. H.; Liu, H. L.; Chen, X. H.; Li, X. G.; Zhang, F. Mixed cations enabled combined bulk and interfacial passivation for efficient and stable perovskite solar cells. Nano-Micro Lett. 2023, 15, 114.

[5]

Zhang, F.; Zhu, K. Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 2020, 10, 1902579.

[6]

Zhang, F.; Lu, H. P.; Tong, J. H.; Berry, J. J.; Beard, M. C.; Zhu, K. Advances in two-dimensional organic-inorganic hybrid perovskites. Energy Environ. Sci. 2020, 13, 1154–1186.

[7]

Shi, Y. T.; Zhang, F. Advances in encapsulations for perovskite solar cells: From materials to applications. Solar RRL 2023, 7, 2201123.

[8]

Wu, P. F.; Zhang, F. Recent advances in lead chemisorption for perovskite solar cells. Trans. Tianjin Univ. 2022, 28, 341–357.

[9]

Li, J. M.; Cao, H. L.; Jiao, W. B.; Wang, Q.; Wei, M. D.; Cantone, I.; Lü, J.; Abate, A. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 2020, 11, 310.

[10]

Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 2016, 15, 247–251.

[11]

Wu, P. F.; Wang, S. R.; Li, X. G.; Zhang, F. Beyond efficiency fever: Preventing lead leakage for perovskite solar cells. Matter 2022, 5, 1137–1161.

[12]

Chen, C. H.; Cheng, S. N.; Cheng, L.; Wang, Z. K.; Liao, L. S. Toxicity, leakage, and recycling of lead in perovskite photovoltaics. Adv. Energy Mater. 2023, 13, 2204144.

[13]

Valastro, S.; Smecca, E.; Mannino, G.; Bongiorno, C.; Fisicaro, G.; Goedecker, S.; Arena, V.; Spampinato, C.; Deretzis, I.; Dattilo, S. et al. Preventing lead leakage in perovskite solar cells with a sustainable titanium dioxide sponge. Nat. Sustain. 2023, 6, 974–983.

[14]

Dou, J.; Bai, Y.; Chen, Q. Challenges of lead leakage in perovskite solar cells. Mater. Chem. Front. 2022, 6, 2779–2789.

[15]

Xiao, Z. W.; Song, Z. N.; Yan, Y. F. From Lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792.

[16]

Zhang, H.; Lee, J. W.; Nasti, G.; Handy, R.; Abate, A.; Grätzel, M.; Park, N. G. Lead immobilization for environmentally sustainable perovskite solar cells. Nature 2023, 617, 687–695.

[17]

Conings, B.; Babayigit, A.; Boyen, H. G. Fire safety of lead halide perovskite photovoltaics. ACS Energy Lett. 2019, 4, 873–878.

[18]

Jiang, Y.; Qiu, L. B.; Juarez-Perez, E. J.; Ono, L. K.; Hu, Z. H.; Liu, Z. H.; Wu, Z. F.; Meng, L. Q.; Wang, Q. J.; Qi, Y. B. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat. Energy 2019, 4, 585–593.

[19]

Niu, B. F.; Wu, H. T.; Yin, J. L.; Wang, B.; Wu, G.; Kong, X. Q.; Yan, B. Y.; Yao, J. Z.; Li, C. Z.; Chen, H. Z. Mitigating the lead leakage of high-performance perovskite solar cells via in situ polymerized networks. ACS Energy Lett. 2021, 6, 3443–3449.

[20]

Liang, Y. M.; Song, P. Q.; Tian, H. R.; Tian, C. B.; Tian, W. J.; Nan, Z. A.; Cai, Y. T.; Yang, P. P.; Sun, C.; Chen, J. F. et al. Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2022, 32, 2110139.

[21]

Li, Z.; Wu, X.; Wu, S. F.; Gao, D. P.; Dong, H.; Huang, F. Z.; Hu, X. T.; Jen, A. K. Y.; Zhu, Z. L. An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy 2022, 93, 106853.

[22]

Zhang, J. K.; Li, Z. P.; Guo, F. J.; Jiang, H. K.; Yan, W. J.; Peng, C.; Liu, R. X.; Wang, L.; Gao, H. T.; Pang, S. et al. Thermally crosslinked F‐rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules. Angew. Chem., Int. Ed. 2023, 135, e202305221.

[23]

Xu, Y. M.; Guo, X.; Lin, Z. H.; Wang, Q. R.; Su, J.; Zhang, J. C.; Hao, Y.; Yang, K. K.; Chang, J. J. Perovskite films regulation via hydrogen-bonded polymer network for efficient and stable perovskite solar cells. Angew. Chem., Int. Ed. 2023, 62, e202306229.

[24]

Xu, D. D.; Mai, R. S.; Jiang, Y.; Chen, C.; Wang, R.; Xu, Z. J.; Kempa, K.; Zhou, G. F.; Liu, J. M.; Gao, J. W. An internal encapsulating layer for efficient, stable, repairable and low-lead-leakage perovskite solar cells. Energy Environ. Sci. 2022, 15, 3891–3900.

[25]
Yang, M. F.; Tian, T.; Fang, Y. X.; Li, W. G.; Liu, G. L.; Feng, W. H.; Xu, M. Y.; Wu, W. Q. Reducing lead toxicity of perovskite solar cells with a built-in supramolecular complex. Nat Sustain., in press, DOI: 10.1038/s41893-023-01181-x.
DOI
[26]

Chen, S. S.; Deng, Y. H.; Gu, H. Y.; Xu, S.; Wang, S.; Yu, Z. H.; Blum, V.; Huang, J. S. Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nat. Energy 2020, 5, 1003–1011.

[27]

Li, Z.; Wu, X.; Li, B.; Zhang, S. F.; Gao, D. P.; Liu, Y. Z.; Li, X. T.; Zhang, N. B.; Hu, X. T.; Zhi, C. Y. et al. Sulfonated graphene aerogels enable safe-to-use flexible perovskite solar modules. Adv. Energy Mater. 2022, 12, 2103236.

[28]

Chen, S. S.; Deng, Y. H.; Xiao, X.; Xu, S.; Rudd, P. N.; Huang, J. S. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nat Sustain. 2021, 4, 636–643.

[29]

Wu, S. F.; Li, Z.; Li, M. Q.; Diao, Y. X.; Lin, F.; Liu, T. T.; Zhang, J.; Tieu, P.; Gao, W. P.; Qi, F. et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 2020, 15, 934–940.

[30]

Zhang, H.; Li, K.; Sun, M.; Wang, F. L.; Wang, H.; Jen, A. K. Y. Design of superhydrophobic surfaces for stable perovskite solar cells with reducing lead leakage. Adv. Energy Mater. 2021, 11, 2102281.

[31]

Luo, H. Q.; Li, P. W.; Ma, J. J.; Li, X.; Zhu, H.; Cheng, Y. J.; Li, Q.; Xu, Q.; Zhang, Y. Q.; Song, Y. L. Bioinspired “cage traps” for closed-loop lead management of perovskite solar cells under real-world contamination assessment. Nat. Commun. 2023, 14, 4730.

[32]

Xiao, X.; Wang, M. X.; Chen, S. S.; Zhang, Y. H.; Gu, H. Y.; Deng, Y. H.; Yang, G.; Fei, C. B.; Chen, B.; Lin, Y. Z. et al. Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules. Sci. Adv. 2021, 7, eabi8249.

[33]

Li, X.; Zhang, F.; He, H. Y.; Berry, J. J.; Zhu, K.; Xu, T. On-device lead sequestration for perovskite solar cells. Nature 2020, 578, 555–558.

[34]

Li, X.; Zhang, F.; Wang, J. X.; Tong, J. H.; Xu, T.; Zhu, K. On-device lead-absorbing tapes for sustainable perovskite solar cells. Nat. Sustain. 2021, 4, 1038–1041.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 July 2023
Revised: 11 August 2023
Accepted: 13 August 2023
Published: 28 August 2023
Issue date: March 2024

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52203237) and the Fundamental Research Funds for the Central Universities (000-0903069032).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return