Journal Home > Volume 1 , Issue 1

Obtaining stable aqueous K-ion capacitors is still challenging due to the cathode materials tended to structurally collapse after long-term cycling during large-radius K-ion insertion/extraction. In this work, three different typical MXene electrodes, i.e., Nb2C, Ti2C, and Ti3C2 were individually investigated upon their electrochemical behaviors for potassium-ion (K-ion) storage. All these MXene materials exhibited pseudocapacitive-dominated behaviors, fast kinetics, and durable K-ion storage, delivering superior performance compared with other K-ion host materials. According to the experimental results, it could be ascribed to the intrinsically large interlayer distance for K-ion transport and the superb structural stability of MXene even subjected to long-term potassiation/depotassiation process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Building durable aqueous K-ion capacitors based on MXene family

Show Author's information Guojin Liang1,§Xinliang Li1,§Yanbo Wang1Shuo Yang1Zhaodong Huang1Qi Yang1Donghong Wang1Binbin Dong2Minshen Zhu3Chunyi Zhi1,4( )
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
Centre for Functional Photonics, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China

§ Guojin Liang and Xinliang Li contributed equally to this work.

Abstract

Obtaining stable aqueous K-ion capacitors is still challenging due to the cathode materials tended to structurally collapse after long-term cycling during large-radius K-ion insertion/extraction. In this work, three different typical MXene electrodes, i.e., Nb2C, Ti2C, and Ti3C2 were individually investigated upon their electrochemical behaviors for potassium-ion (K-ion) storage. All these MXene materials exhibited pseudocapacitive-dominated behaviors, fast kinetics, and durable K-ion storage, delivering superior performance compared with other K-ion host materials. According to the experimental results, it could be ascribed to the intrinsically large interlayer distance for K-ion transport and the superb structural stability of MXene even subjected to long-term potassiation/depotassiation process.

Keywords: aqueous K-ion capacitor, MXene family, superior cyclic stability

References(46)

[1]

Gogotsi, Y.; Penner, R. M. Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like? ACS Nano 2018, 12, 2081-2083.

[2]

Zhu, M. S.; Huang, Y.; Deng, Q. H.; Zhou, J.; Pei, Z. X.; Xue, Q.; Huang, Y.; Wang, Z. F.; Li, H. F.; Huang, Q. et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 2016, 6, 1600969.

[3]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[4]

Wang, Y. K.; Chen, F.; Liu, Z. X.; Tang, Z. J.; Yang, Q.; Zhao, Y.; Du, S. Y.; Chen, Q.; Zhi, C. Y. A highly elastic and reversibly stretchable all-polymer supercapacitor. Angew. Chem., Int. Ed. 2019, 54, 15707-15711.

[5]

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502-1505.

[6]

Yang, Q.; Cui, S. H.; Ge, Y. F.; Tang, Z. J.; Liu, Z. X.; Li, H. F.; Li, N.; Zhang, H. Y.; Liang, J. B.; Zhi, C. Y. Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 2018, 50, 623-631.

[7]

Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.

[8]

Wang, X. F.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 2015, 6, 6544.

[9]

Liu, Z. X.; Liang, G. J.; Zhan, Y. X.; Li, H. F.; Wang, Z. F.; Ma, L. T.; Wang, Y. K.; Niu, X. R.; Zhi, C. Y. A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy 2019, 58, 732-742.

[10]

Ding, J.; Hu, W. B.; Paek, E.; Mitlin, D. Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 2018, 118, 6457-6498.

[11]

Peters, J. F.; Weil, M. A critical assessment of the resource depletion potential of current and future lithium-ion batteries. Resources 2016, 5, 46.

[12]

Chen, J. T.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 1803894.

[13]

Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.

[14]

Xu, Z. Q.; Wu, M. Q.; Chen, Z.; Chen, C.; Yang, J.; Feng, T. T.; Paek, E.; Mitlin, D. Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 2019, 6, 1802272.

[15]

Zhu, Y. H.; Zhang, Q.; Yang, X.; Zhao, E.Y.; Sun, T.; Zhang, X. B.; Wang, S.; Yu, X.Q.; Yan, J. M.; Jiang, Q. Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-ion batteries. Chem 2019, 5, 168-179.

[16]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.

[17]

Lukatskaya, M. R.; Bak, S. M.; Yu, X. Q.; Yang X. Q.; Barsoum M. W.; Gogotsi Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 2015, 5, 1500589.

[18]

Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

[19]

Simon, P. Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano 2017, 11, 2393-2396.

[20]

Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491-8494.

[21]

Zhan, C.; Naguib, M.; Lukatskaya, M.; Kent, P. R. C.; Gogotsi, Y.; Jiang, D. E. Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 2018, 9, 1223-1228.

[22]

Yang, Q.; Wang, Y. K.; Li, X. L.; Li, H. F.; Wang, Z. F.; Tang, Z. J.; Ma, L. T.; Mo, F. N.; Zhi, C. Y. Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 2018, 1, 183-195.

[23]

Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Tang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409-412.

[24]

Mu, X. P.; Wang, D. S.; Du, F.; Chen, G.; Wang, C. Z.; Wei, Y. J.; Gogotsi, Y.; Gao, Y.; Dall'Agnese, Y. Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Funct. Mater. 2019, 29, 1902953.

[25]

Yang, Q.; Mo, F. N.; Liu, Z. X.; Ma, L. T.; Li, X. L.; Fang, D. L.; Chen, S. M.; Zhang, S. J.; Zhi, C. Y. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10,000-cycle lifespan and superior rate capability. Adv. Mater. 2019, 31, 1901521.

[26]

Mo, F. N.; Liang, G. J.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C.Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at -20 ℃. Energy Environ. Sci. 2019, 12, 706-715.

[27]

Liang, G. J.; Wang, Y. L.; Huang, Z. D.; Mo, F. N.; Li, X. L.; Yang, Q.; Wang, D. H.; Li, H. F.; Chen, S. M.; Zhi, C. Y. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 2020, 32, 1907802.

[28]

Wang, X. H.; Mathis, T. S.; Li, K.; Lin, Z. F.; Vlcek, L.; Torita, T.; Osti, N. C.; Hatter, C.; Urbankowski, P.; Sarycheva, A. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 2019, 4, 241-248.

[29]

Boota, M.; Gogotsi, Y. MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 2019, 9, 1802917.

[30]

Liang, G. J.; Mo, F. N.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Wang, D. H.; Yang, Q.; Ma, L. T.; Zhi, C. Y. A universal principle to design reversible aqueous batteries based on deposition-dissolution mechanism. Adv. Energy Mater. 2019, 9, 1901838.

[31]

Xue, Q.; Gan, H. B.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Deng, S. Z.; Liu, F.; Zhi, C. Y. Boron element nanowires electrode for supercapacitors. Adv. Energy Mater. 2018, 8, 1703117.

[32]

Deng, W. W.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Yang, H. X. A perylene diimide crystal with high capacity and stable cyclability for Na-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 21095-21099.

[33]

Jiang, L. W.; Lu, Y. X.; Zhao, C. L.; Liu, L. L.; Zhang, J. N.; Zhang, Q. Q.; Shen, X.; Zhao, J. M.; Yu, X. Q.; Li, H. et al. Building aqueous K-ion batteries for energy storage. Nat. Energy 2019, 4, 495-503.

[34]

Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925-14931.

[35]

Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide "clay" with high volumetric capacitance. Nature 2014, 516, 78-81.

[36]

Dong, S. Y.; Li, Z. F.; Xing, Z. Y.; Wu, X. Y.; Ji, X. L.; Zhang, X. G. Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 2018, 10, 15542-15547.

[37]

Ming, F. W.; Liang, H. F.; Zhang, W. L.; Ming, J.; Lei, Y. J.; Emwas, A. H.; Alshareef, H. N. Porous MXenes enable high performance potassium ion capacitors. Nano Energy 2019, 62, 853-860.

[38]

Zhou, L.; Zhang, M. Y.; Wang, Y. F.; Zhu, Y. S.; Fu, L. J.; Liu, X.; Wu, Y. P.; Huang, W. Cubic prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim. Acta 2017, 232, 106-113.

[39]

Yang, Q.; Huang, Z. D.; Li, X. L.; Liu, Z. X.; Li, H. F.; Liang, G. J.; Wang, D. H.; Huang, Q.; Zhang, S. J.; Chen, S. M. et al. A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano 2019, 13, 8275-8283.

[40]

Liang, G. J.; Mo, F. N.; Ji, X. L.; Zhi, C. Y. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 2020, 6, 109-123.

[41]

Chen, J. T.; Yang, B. J.; Li, H. X.; Ma, P. J.; Lang, J. W.; Yan, X. B. Candle soot: Onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor. J. Materi. Chem. A 2019, 7, 9247-9252.

[42]

Cui, Y. P.; Liu, W.; Wang, X.; Li, J. J.; Zhang, Y.; Du, Y. X.; Liu, S.; Wang, H. L.; Feng, W. T.; Chen, M. Bioinspired mineralization under freezing conditions: An approach to fabricate porous carbons with complicated architecture and superior K+ storage performance. ACS Nano 2019, 13, 11582-11592.

[43]

Qiu, D. P.; Guan, J. Y.; Li, M.; Kang, C. H.; Wei, J. Y.; Li, Y.; Xie, Z. Y.; Wang, F.; Yang, R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 2019, 29, 1903496.

[44]

Yang, C. Y.; Chen, J.; Ji, X.; Pollard, T. P.; Lü, X. J.; Sun, C. J.; Hou, S.; Liu, Q.; Liu, C. M.; Qing, T. T. et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 2019, 569, 245-250.

[45]

Zhang, Z. Y.; Li, M. L.; Gao, Y.; Wei, Z. X.; Zhang, M. N.; Wang, C. Z.; Zeng, Y.; Zou, B.; Chen, G.; Du, F. Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 2018, 28, 1802684.

[46]

Yi, Y. Y.; Sun, Z. T.; Li, C.; Tian, Z. N.; Lu, C.; Shao, Y. L.; Li, J.; Sun, J. Y.; Liu, Z. F. Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 2019, 30, 1903878.

File
nre-1-1-9120002_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 February 2022
Accepted: 25 March 2022
Published: 28 March 2022
Issue date: June 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This research was supported by GRF under Project N_CityU11305218. The work was also partially sponsored by the Science Technology and Innovation Committee of Shenzhen Municipality (No. JCYJ20170818103435068) and a Grant from City University of Hong Kong (No. 9667165).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return