AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Engineering the asymmetric active moiety of Ce-N3P for efficient selective oxidation of aromatic C–H bonds

Peng Zhu1,§Aolin Li2,§Huan Liu3 ( )Fangping Ouyang2Da Yang4 ( )Zhen Zhou1,5( )
Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
School of Physics Science and Technology, and Xinjiang Key Laboratory of Solid-State Physics and Devices, Xinjiang University, Urumqi 830046, China
College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
National Key Laboratory of Special Rare Metal Materials, Zhengzhou University, Zhengzhou 450001, China

§ Peng Zhu and Aolin Li contributed equally to this work.

Show Author Information

Graphical Abstract

Asymmetric N, P co-coordinated Ce single-atom sites were constructed for the activation of aromatic C–H bond. The partly substitution of coordinated N with P atom breaks the symmetry of active moiety, and raises the electron density of Ce center, then promoting the subsequent free radical reaction, thereby boosting the catalytic performance.

Abstract

Developing an effective catalyst for the selective oxidation of hydrocarbon to high value-added compounds remains as a challenge in terms of the growing global concerns about green chemistry and environmental sustainability. Herein, asymmetric nitrogen and phosphorus co-coordinated Ce single-atom sites (Ce-N3P-C) were constructed for the activation of aromatic C–H bond. Ce-N3P-C demonstrates excellent catalytic performance for efficient solvent-free aerobic oxidation of aromatic C–H bonds, especially for oxidation of ethylbenzene with 97% selectivity of acetophenone and high stability. The turnover frequency (TOF) value is 536 h−1, which is the highest level among reported non-precious-metal catalysts in a similar system. The partial substitution of coordinated N with P atom breaks the symmetry of the active moiety of Ce and raises the electron density of Ce center. The reduced valence state of metallic Ce indicates that more electrons could transfer to the antibonding π-orbital of the adsorbed O2, thus promoting the subsequent free radical reaction and accelerating the rate-determining step. The breaking of coordination symmetry of single-atom site catalyst by introducing heteroatoms to tune its active moiety paves a way to boost the catalytic performance of similar catalysts.

Electronic Supplementary Material

Download File(s)
7533_ESM.pdf (1.5 MB)

References

[1]

Jones, D. M.; Head, I. M.; Gray, N. D.; Adams, J. J.; Rowan, A. K.; Aitken, C. M.; Bennett, B.; Huang, H.; Brown, A.; Bowler, B. F. J. et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 2008, 451, 176–180.

[2]

Dai, C. N.; Zhang, J.; Huang, C. P.; Lei, Z. G. Ionic liquids in selective oxidation: Catalysts and solvents. Chem. Rev. 2017, 117, 6929–6983.

[3]

Yuan, C. X.; Liang, Y.; Hernandez, T.; Berriochoa, A.; Houk, K. N.; Siegel, D. Metal-free oxidation of aromatic carbon–hydrogen bonds through a reverse-rebound mechanism. Nature 2013, 499, 192–196.

[4]

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

[5]

Chen, M. S.; White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 2010, 327, 566–571.

[6]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[7]

Liu, Y. L.; Zheng, Y. N.; Feng, D. Y.; Zhang, L. L.; Zhang, L.; Song, X. W.; Qiao, Z. A. Efficient selective oxidation of aromatic alkanes by double cobalt active sites over oxygen vacancy-rich mesoporous Co3O4. Angew. Chem., Int. Ed. 2023, 62, e202306261.

[8]

Su, Y. Z.; Chen, Z. C.; Huang, J. N.; Wang, H. J.; Yu, H.; Zhang, Q.; Cao, Y. H.; Peng, F. Confined cobalt on carbon nanotubes in solvent-free aerobic oxidation of ethylbenzene: Enhanced interfacial charge transfer. ChemCatChem 2022, 14, e202101378.

[9]

Zhao, H.; Fang, J.; Xu, D.; Li, J. F.; Li, B. Y.; Zhao, H. C.; Dong, Z. P. Multistep protection strategy for preparation of atomically dispersed Fe–N catalysts for selective oxidation of ethylbenzene to acetophenone. Catal. Sci. Technol. 2022, 12, 641–651.

[10]

Salazar, C. A.; Flesch, K. N.; Haines, B. E.; Zhou, P. S.; Musaev, D. G.; Stahl, S. S. Tailored quinones support high-turnover Pd catalysts for oxidative C–H arylation with O2. Science 2020, 370, 1454–1460.

[11]

Kim, J. H.; Constantin, T.; Simonetti, M.; Llaveria, J.; Sheikh, N. S.; Leonori, D. A radical approach for the selective C–H borylation of azines. Nature 2021, 595, 677–683.

[12]

Gutmann, B.; Elsner, P.; Roberge, D.; Kappe, C. O. Homogeneous liquid-phase oxidation of ethylbenzene to acetophenone in continuous flow mode. ACS Catal. 2013, 3, 2669–2676.

[13]

Stiehl, J. D.; Kim, T. S.; McClure, S. M.; Mullins, C. B. Evidence for molecularly chemisorbed oxygen on TiO2 supported gold nanoclusters and Au (111). J. Am. Chem. Soc. 2004, 126, 1606–1607.

[14]

Liu, Y. L.; Zhang, P. F.; Liu, J. M.; Wang, T.; Huo, Q. S.; Yang, L.; Sun, L.; Qiao, Z. A.; Dai, S. Gold cluster-CeO2 nanostructured hybrid architectures as catalysts for selective oxidation of inert hydrocarbons. Chem. Mater. 2018, 30, 8579–8586.

[15]

Dong, H. J.; Xie, R. F.; Yang, L.; Li, F. A hierarchical flower-like hollow alumina supported bimetallic AuPd nanoparticle catalyst for enhanced solvent-free ethylbenzene oxidation. Dalton Trans. 2018, 47, 7776–7786.

[16]

Tang, Z. R.; Edwards, J. K.; Bartley, J. K.; Taylor, S. H.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. J. Catal. 2007, 249, 208–219.

[17]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[18]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[19]

Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.

[20]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[21]

Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.

[22]
Shen, J.; Tang, M. H.; Shi, Z. H.; Guan, S. Y.; Shi, Y. J.; Zhuang, Z. C.; Li, R. Z.; Yang, J. R.; He, D. P.; Liu, B. Z. et al. Efficient generation of negative hydrogen with bimetallic-ternary-structured catalysts for nitrobenzene hydrogenation. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202423626.
[23]

Gao, Z. Y.; Song, Z.; Miao, Z. W.; Ye, C. L.; Yang, W. J. High selectivity of H2O2 activation to ·O2 for efficient NO oxidation over Co single-atom catalyst. Nano Res. 2025, 18, 94907255.

[24]

Sun, X. H.; Zhang, B. Y.; Lu, Q.; Jiang, J. J.; Ye, C. L.; Cui, G. Q.; Zhuang, Z. C.; Zhang, J.; Bitter, J. H.; Li, G. N. et al. Tailoring the proximity of iron and manganese atomic sites for efficient CO2 electroreduction reaction. Nano Res. 2025, 18, 94907249.

[25]

Ye, B. C.; Li, W. H.; Zhang, X.; Chen, J.; Gao, Y.; Wang, D. S.; Pan, H. G. Advancing heterogeneous organic synthesis with coordination chemistry-empowered single-atom catalysts. Adv. Mater. 2024, 36, 2402747.

[26]

Cheng, X. F.; He, J. H.; Ji, H. Q.; Zhang, H. Y.; Cao, Q.; Sun, W. J.; Yan, C. L.; Lu, J. M. Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia. Adv. Mater. 2022, 34, 2205767.

[27]

Huang, M.; Deng, B. W.; Zhao, X. L.; Zhang, Z. Y.; Li, F.; Li, K. L.; Cui, Z. H.; Kong, L. X.; Lu, J. M.; Dong, F. et al. Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano 2022, 16, 2110–2119.

[28]
Wang, X. Y.; Wei, W. J.; Zhou, S. Y.; Pan, Y. Z.; Yang, J. R.; Gan, T.; Zhuang, Z. C.; Li, W. H.; Zhang, X.; Pan, Y. M. et al. Phosphorus-doped single atom copper catalyst as a redox mediator in the cathodic reduction of quinazolinones. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202505085.
[29]

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

[30]

Zhao, H.; Tian, B. B.; Su, C. L.; Li, Y. Single-atom iron and doped sulfur improve the catalysis of polysulfide conversion for obtaining high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 7171–7177.

[31]

Yang, X.; Cheng, J.; Lv, H. K.; Yang, X.; Ding, L. W.; Xu, Y.; Zhang, K.; Sun, W. F.; Zhou, J. H. Sulfur-doped unsaturated Ni–N3 coordination for efficient electroreduction of CO2. Chem. Eng. J. 2022, 450, 137950.

[32]

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc–air battery and hydrogen–air fuel cell. Nat. Commun. 2018, 9, 5422.

[33]

Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[34]

Xu, J. W.; Zhang, S. B.; Liu, H. J.; Liu, S.; Yuan, Y.; Meng, Y. H.; Wang, M. M.; Shen, C. Y.; Peng, Q.; Chen, J. H. et al. Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2023, 62, e202308044.

[35]

Yin, L. L.; Zhang, S.; Sun, M. Z.; Wang, S. Y.; Huang, B. L.; Du, Y. P. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2302485.

[36]

Macedo, A. G.; Fernandes, S. E. M.; Valente, A. A.; Ferreira, R. A. S.; Carlos, L. D.; Rocha, J. Catalytic performance of ceria nanorods in liquid-phase oxidations of hydrocarbons with tert-butyl hydroperoxide. Molecules 2010, 15, 747–765.

[37]

Devika, S.; Palanichamy, M.; Murugesan, V. Selective oxidation of ethylbenzene over CeAlPO-5. Appl. Catal. A: Gen. 2011, 407, 76–84.

[38]

Xiao, X. D.; Ruan, Z. S. L.; Li, Q.; Zhang, L. P.; Meng, H. Y.; Zhang, Q.; Bao, H. L.; Jiang, B. J.; Zhou, J.; Guo, C. Y. et al. A unique Fe–N4 coordination system enabling transformation of oxygen into superoxide for photocatalytic C–H activation with high efficiency and selectivity. Adv. Mater. 2022, 34, 2200612.

[39]

Yoshino, Y.; Hayashi, Y.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. Catalytic oxidation of alkylbenzenes with molecular oxygen under normal pressure and temperature by N-hydroxyphthalimide combined with Co(OAc)2. J. Org. Chem. 1997, 62, 6810–6813.

[40]

Lv, W. M.; Yang, L.; Fan, B. B.; Zhao, Y.; Chen, Y. F.; Lu, N. Y.; Li, R. F. Silylated MgAl LDHs intercalated with MnO2 nanowires: Highly efficient catalysts for the solvent-free aerobic oxidation of ethylbenzene. Chem. Eng. J. 2015, 263, 309–316.

[41]

Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013, 4, 1593.

[42]

Luo, J.; Peng, F.; Yu, H.; Wang, H. J.; Zheng, W. X. Aerobic liquid-phase oxidation of ethylbenzene to acetophenone catalyzed by carbon nanotubes. ChemCatChem 2013, 5, 1578–1586.

[43]

Su, Y. Z.; Li, Y. H.; Chen, Z. C.; Huang, J. N.; Wang, H. J.; Yu, H.; Cao, Y. H.; Peng, F. New understanding of selective aerobic oxidation of ethylbenzene catalyzed by nitrogen-doped carbon nanotubes. ChemCatChem 2021, 13, 646–655.

[44]

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

[45]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[46]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[47]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[48]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

Nano Research
Article number: 94907533
Cite this article:
Zhu P, Li A, Liu H, et al. Engineering the asymmetric active moiety of Ce-N3P for efficient selective oxidation of aromatic C–H bonds. Nano Research, 2025, 18(6): 94907533. https://doi.org/10.26599/NR.2025.94907533
Topics:

364

Views

59

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 March 2025
Revised: 30 April 2025
Accepted: 01 May 2025
Published: 19 June 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return