Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Spherical porous alumina (Al2O3) materials hold critical importance in industrial catalysis, but their direct synthesis remains a significant challenge. Herein, we report a hydrogen bond-enhanced monomicelle assembly strategy for synthesizing uniformly monodispersed mesoporous Al2O3 microspheres. This synthesis features the introduction of glycerol with abundant hydroxyl groups (−OH) to form the hydrogen bond network between the alumina-based monomicelles. The hydrogen bond network reduces the crosslinking rate of the Al2O3 oligomers and matches it with the micelle assembly rate, thereby enabling the direct synthesis of mesoporous Al2O3 microspheres in solution. The resultant mesoporous Al2O3 microspheres exhibit uniform spherical morphology (~ 1.3 μm), a high specific surface area (144 m2·g−1), a large pore size (~ 7.8 nm), and abundant Lewis acid sites. Moreover, this strategy is universal for organic and inorganic Al2O3 precursors, overcoming the limitations of precursor compatibility. The mesoporous Al2O3 microspheres loaded with uniformly distributed PtSn nanoparticles are utilized as a highly efficient catalyst for propane dehydrogenation to propylene. The catalyst exhibits high propane conversion rate (~ 41%), high selectivity to propylene (> 98%), a low deactivation rate constant (0.004 h−1) and remarkable long-term stability (~ 200 h) under industrial conditions at 550 °C.
Yu, X.; Genz, N. S.; Mendes, R. G.; Ye, X. W.; Meirer, F.; Nachtegaal, M.; Monai, M.; Weckhuysen, B. M. Anchoring PdOx clusters on defective alumina for improved catalytic methane oxidation. Nat. Commun. 2024, 15, 6494.
Ma, X. L.; Yin, H. B.; Pu, Z. T.; Zhang, X. Y.; Hu, S. P.; Zhou, T.; Gao, W. Z.; Luo, L. H.; Li, H. L.; Zeng, J. Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis. Nat. Commun. 2024, 15, 8470.
Li, X.; Li, W. T.; Zhang, J.; Yin, W.; Xia, Y. G.; Xie, K. Porous single-crystalline centimeter-sized α-Al2O3 monoliths for selective and durable non-oxidative dehydrogenation of ethane. Angew. Chem., Int. Ed. 2024, 63, e202315274.
Zhang, F.; Zeng, M. H.; Yappert, R. D.; Sun, J. K.; Lee, Y. H.; LaPointe, A. M.; Peters, B.; Abu-Omar, M. M.; Scott, S. L. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 2020, 370, 437–441.
Liu, C. H.; Li, R. T.; Wang, F.; Li, K.; Fan, Y. M.; Mu, R. T.; Fu, Q. Water promoted structural evolution of Ag nanocatalysts supported on alumina. Nano Res. 2023, 16, 9107–9115.
Sun, F.; Qu, Z. B.; Wang, H.; Liu, X. Y.; Pei, T.; Han, R.; Gao, J. H.; Zhao, G. B.; Lu, Y. F. Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode. Nano Res. 2021, 14, 131–138.
Yang, J.; Zheng, J.; Dun, C.; Falling, L. J.; Zheng, Q.; Chen, J. L.; Zhang, M.; Jaegers, N. R.; Asokan, C.; Guo, J. H. et al. Unveiling highly sensitive active site in atomically dispersed gold catalysts for enhanced ethanol dehydrogenation. Angew. Chem., Int. Ed. 2024, 63, e202408894.
Zhang, Z. L.; Zhu, Y. H.; Asakura, H.; Zhang, B.; Zhang, J. G.; Zhou, M. X.; Han, Y.; Tanaka, T.; Wang, A. Q.; Zhang, T. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 2017, 8, 16100.
Pajares, A.; Ramírez de la Piscina, P.; Homs, N. Selective reduction of CO2 to CO over alumina-supported catalysts of group 5 transition metal carbides. Appl. Catal. A: Gen. 2024, 687, 119963.
Kwak, Y.; Lee, Y. J.; Moon, S.; Lee, K.; Ramadhani, S.; On, E. R.; Ahn, C. I.; Hwang, S. J.; Sohn, H.; Jeong, H. et al. Scalable atomic-layer tailoring of abundant oxide supports unlocks superior interfaces for low-metal-loading dehydrogenation. Angew. Chem., Int. Ed. 2025, 137, e202417598.
Pham, H. N.; Sattler, J. J. H. B.; Weckhuysen, B. M.; Datye, A. K. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts. ACS Catal. 2016, 6, 2257–2264.
Han, W. Y.; Lin, L. F.; Cen, Z. Y.; Ke, Y. B.; Xu, Q.; Zhu, J. F.; Mei, X. L.; Xia, Z. H.; Zheng, X. R.; Wang, Y. Q. et al. Production of branched alkanes by upcycling of waste polyethylene over controlled acid sites of SO4/ZrO2–Al2O3 catalyst. Angew. Chem., Int. Ed. 2025, 64, e202417923.
Oh, Y.; Shin, J.; Noh, H.; Kim, C.; Kim, Y. S.; Lee, Y. K.; Lee, J. K. Selective hydrotreating and hydrocracking of FCC light cycle oil into high-value light aromatic hydrocarbons. Appl. Catal. A: Gen. 2019, 577, 86–98.
Chen, S.; Chang, X.; Sun, G. D.; Zhang, T. T.; Xu, Y. Y.; Wang, Y.; Pei, C. L.; Gong, J. L. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021, 50, 3315–3354.
Chen, S.; Pei, C. L.; Sun, G. D.; Zhao, Z. J.; Gong, J. L. Nanostructured catalysts toward efficient propane dehydrogenation. Acc. Mater. Res. 2020, 1, 30–40.
Xu, C. K.; Tan, S. D.; Tang, Y. X.; Xi, S. B.; Yao, B. Q.; Wade, A.; Zhao, B. B.; Lu, S. C.; Du, Y. K.; Tian, M. J. et al. Compositional variations in highly active PtSn/Al2O3 catalysts derived from molecular complexes. Appl. Catal. B: Environ. 2024, 341, 123285.
Chen, S.; Luo, R.; Zhao, Z. J.; Pei, C. L.; Xu, Y. Y.; Lu, Z. P.; Zhao, C. J.; Song, H. B.; Gong, J. L. Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation. Nat. Commun. 2023, 14, 2620.
Ma, R.; Gao, J. X.; Kou, J. J.; Dean, D. P.; Breckner, C. J.; Liang, K. J.; Zhou, B.; Miller, J. T.; Zou, G. J. Insights into the nature of selective nickel sites on Ni/Al2O3 catalysts for propane dehydrogenation. ACS Catal. 2022, 12, 12607–12616.
Srinath, N. V.; Longo, A.; Poelman, H.; Ramachandran, R. K.; Feng, J. Y.; Dendooven, J.; Reyniers, M. F.; Galvita, V. V. In situ XAS/SAXS study of Al2O3-coated ptga catalysts for propane dehydrogenation. ACS Catal. 2021, 11, 11320–11335.
Chen, S.; Zhao, Z. J.; Mu, R. T.; Chang, X.; Luo, J.; Purdy, S. C.; Kropf, A. J.; Sun, G. D.; Pei, C. L.; Miller, J. T. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 2021, 7, 387–405.
Zhang, W.; Chi, Z. X.; Mao, W. X.; Lv, R. W.; Cao, A. M.; Wan, L. J. One-nanometer-precision control of Al2O3 nanoshells through a solution-based synthesis route. Angew. Chem., Int. Ed. 2014, 53, 12776–12780.
Ma, J. L.; Liu, Z. W.; Song, J. L.; Zhong, L. X.; Xiao, D. Q.; Xi, H. X.; Li, X. H.; Sun, R. C.; Peng, X. W. Au@h-Al2O3 analogic yolk-shell nanocatalyst for highly selective synthesis of biomass-derived D-xylonic acid via regulation of structure effects. Green Chem. 2018, 20, 5188–5195.
Wang, Y. C.; Rong, K.; Wei, J. L.; Chang, S. L.; Yu, D. B.; Fang, Y. X.; Dong, S. J. One-step synthesis of three-dimensional mesoporous Co3O4@Al2O3 nanocomposites with deep eutectic solvent: An efficient and stable peroxymonosulfate activator for organic pollutant degradations. Nano Res. 2023, 16, 11430–11443.
Bai, Y. T.; Zong, X. P.; Jin, C. W.; Wang, S. D.; Wang, S. Synergy of single-atom Fe1 and Ce–Ov sites on mesoporous CeO2–Al2O3 for efficient selective catalytic reduction of NO with CO. ACS Catal. 2024, 14, 827–836.
Deng, B.; Advincula, P. A.; Luong, D. X.; Zhou, J. G.; Zhang, B. Y.; Wang, Z.; McHugh, E. A.; Chen, J. H.; Carter, R. A.; Kittrell, C. et al. High-surface-area corundum nanoparticles by resistive hotspot-induced phase transformation. Nat. Commun. 2022, 13, 5027.
Yang, Y. P.; Miao, C. L.; Wang, R. Y.; Zhang, R. X.; Li, X. Y.; Wang, J. G.; Wang, X.; Yao, J. N. Advances in morphology-controlled alumina and its supported Pd catalysts: Synthesis and applications. Chem. Soc. Rev. 2024, 53, 5014–5053.
Geerts, L.; Geerts-Claes, H.; Skorikov, A.; Vermeersch, J.; Vanbutsele, G.; Galvita, V.; Constales, D.; Chandran, C. V.; Radhakrishnan, S.; Seo, J. W. et al. Spherical core-shell alumina support particles for model platinum catalysts. Nanoscale 2021, 13, 4221–4232.
Xu, X.; Megarajan, S. K.; Zhang, Y.; Jiang, H. Q. Ordered mesoporous alumina and their composites based on evaporation induced self-assembly for adsorption and catalysis. Chem. Mater. 2020, 32, 3–26.
Chen, Y.; Zeng, Y.; Hung, C. T.; Zhang, Z. H.; Lv, Z. R.; Huang, S. C.; Yang, Y.; Liu, Y. P.; Li, W. Interfacial synergism of hollow mesoporous Pt/WOx/SiO2–TiO2 catalysts enable highly selective hydrogenolysis of glycerol to 1,3-propanediol. Nano Res. 2023, 16, 9081–9090.
Duan, L. L.; Wang, C. Y.; Zhang, W.; Ma, B.; Deng, Y. H.; Li, W.; Zhao, D. Y. Interfacial assembly and applications of functional mesoporous materials. Chem. Rev. 2021, 121, 14349–14429.
Sun, L. Z.; Yao, H. Q.; Wang, Y. Z.; Zheng, C. B.; Liu, B. Mesostructures engineering to promote selective nitrate-to-ammonia electroreduction. Adv. Energy Mater. 2023, 13, 2303054.
Zhang, W.; Zhu, K. R.; Ren, W. X.; He, H. L.; Liang, H. C.; Zhai, Y. P.; Li, W. Recent advances in the marriage of catalyst nanoparticles and mesoporous supports. Adv. Mater. Interfaces 2022, 9, 2101528.
Chen, J. Y.; Kang, Y. K.; Zhang, W.; Zhang, Z. H.; Chen, Y.; Yang, Y.; Duan, L. L.; Li, Y. F.; Li, W. Lattice-confined single-atom Fe1Sx on mesoporous TiO2 for boosting ambient electrocatalytic N2 reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202203022.
Zhang, W.; Zhang, J. W.; Wang, N.; Zhu, K. R.; Yang, C. C.; Ai, Y.; Wang, F. M.; Tian, Y.; Ma, Y. Z.; Ma, Y. et al. Two-electron redox chemistry via single-atom catalyst for reversible zinc-air batteries. Nat. Sustain. 2024, 7, 463–473.
Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.
Wu, Z. X.; Li, Q.; Feng, D.; Webley, P. A.; Zhao, D. Y. Ordered mesoporous crystalline γ-Al2O3 with variable architecture and porosity from a single hard template. J. Am. Chem. Soc. 2010, 132, 12042–12050.
Liu, Y.; Teng, W.; Chen, G.; Zhao, Z. W.; Zhang, W.; Kong, B.; Hozzein, W. N.; Al-Khalaf, A. A.; Deng, Y. H.; Zhao, D. Y. A vesicle-aggregation-assembly approach to highly ordered mesoporous γ-alumina microspheres with shifted double-diamond networks. Chem. Sci. 2018, 9, 7705–7714.
Wei, J.; Ren, Y.; Luo, W.; Sun, Z. K.; Cheng, X. W.; Li, Y. H.; Deng, Y.; Elzatahry, A. A.; Al-Dahyan, D.; Zhao, D. Y. Ordered mesoporous alumina with ultra-large pores as an efficient absorbent for selective bioenrichment. Chem. Mater. 2017, 29, 2211–2217.
Ebert, F.; Ingale, P.; Vogl, S.; Praetz, S.; Schlesiger, C.; Pfister, N.; Naumann d’Alnoncourt, R.; Roldán Cuenya, B.; Thomas, A.; Gioria, E. et al. Cobalt(II) nanoclusters incorporated in ordered mesoporous Al2O3 for stable and coke-resistant propane dehydrogenation. ACS Catal. 2024, 14, 9993–10008.
Lan, K.; Liu, Y.; Zhang, W.; Liu, Y.; Elzatahry, A.; Wang, R. C.; Xia, Y. Y.; Al-Dhayan, D.; Zheng, N. F.; Zhao, D. Y. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 2018, 140, 4135–4143.
Duan, L. L.; Hung, C. T.; Wang, J. X.; Wang, C. Y.; Ma, B.; Zhang, W.; Ma, Y. Z.; Zhao, Z. W.; Yang, C. C.; Zhao, T. C. et al. Synthesis of fully exposed single-atom-layer metal clusters on 2D ordered mesoporous TiO2 nanosheets. Angew. Chem., Int. Ed. 2022, 61, e202211307.
Li, Q. L.; Sun, Y. F.; Sun, Y. L.; Wen, J. J.; Zhou, Y.; Bing, Q. M.; Isaacs, L. D.; Jin, Y. H.; Gao, H.; Yang, Y. W. Mesoporous silica nanoparticles coated by layer-by-layer self-assembly using cucurbit[7]uril for in vitro and in vivo anticancer drug release. Chem. Mater. 2014, 26, 6418–6431.
Cui, M. Q.; Lee, P. S. Solid polymer electrolyte with high ionic conductivity via layer-by-layer deposition. Chem. Mater. 2016, 28, 2934–2940.
Shi, L.; Deng, G. M.; Li, W. C.; Miao, S.; Wang, Q. N.; Zhang, W. P.; Lu, A. H. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem., Int. Ed. 2015, 54, 13994–13998.
Wang, Y.; Wang, X.; Qiao, M. F.; Wu, Q. Y.; Liu, K. L.; Yi, X. D.; Qin, R. X.; Fu, G.; Zheng, N. F. Color center-rich γ-Al2O3 promotes propane dehydrogenation. Sci. China Chem. 2024, 67, 4134–4141.
Wu, Q. Y.; Zhong, Y. Y.; Zhou, L.; Zhu, M. S.; Liu, S. J.; Qin, R. X.; Zheng, N. F. Oxygen vacancy-enriched alumina stabilized pd nanocatalysts for selective hydrogenation of phenols. J. Am. Chem. Soc. 2024, 146, 32263–32268.
Zhao, Z. C.; Xiao, D.; Chen, K. Z.; Wang, R.; Liang, L. X.; Liu, Z. M.; Hung, I.; Gan, Z. H.; Hou, G. J. Nature of five-coordinated Al in γ-Al2O3 revealed by ultra-high-field solid-state NMR. ACS Cent. Sci. 2022, 8, 795–803.
Duan, H. M.; You, R.; Xu, S. T.; Li, Z. R.; Qian, K.; Cao, T.; Huang, W. X.; Bao, X. H. Pentacoordinated Al3+-stabilized active Pd structures on Al2O3-coated palladium catalysts for methane combustion. Angew. Chem., Int. Ed. 2019, 58, 12043–12048.
Kwak, J. H.; Hu, J. Z.; Mei, D. H.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.
297
Views
86
Downloads
1
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).