AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (22.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Stabilizing Co nanoparticles for CO2 hydrogenation by lattice-matching confinement in ZnO interlayers

Wangxing Zhang1Yu Luo1Sónia A.C. Carabineiro2Shuai Lyu1 ( )Wenwen Xiao1Zhiyan He1,3Zhu’an Zheng4Junjiang Zhu1 ( )
Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224000, China
Show Author Information

Graphical Abstract

A lattice-mismatching strategy was used to engineer the nanostructure of the confinedspace, enhancing the stability of the Co/ZnO catalyst for CO2 hydrogenation.

Abstract

Confining active nanoparticles within specific nanoscale spaces is a promising strategy to improve the catalytic activity, selectivity and stability of catalysts. In this study, we present a lattice-matching approach to confine Co particles within ZnO layers (ZnO/Co/ZnO) for CO2 hydrogenation, a critical and challenging reaction in the field of CO2 utilization and energy production. XRD patterns reveal that the lattice mismatch between ZnO and hexagonal wurtzite CoO (w-CoO) is only 0.18%, facilitating the epitaxial growth of w-CoO on the ZnO surface, or vice versa. This minimal mismatch enables the successful confinement of w-CoO within the ZnO interlayers. This advanced methodology can also be adapted to diverse ZnO morphologies, allowing the optimization of the confined catalyst microstructure. Significantly, when Co particles are confined within the interlayer of ZnO, they exhibit excellent catalytic activity, achieving a rate of 15.8 μ molCO2gCo1s1 for CO2 hydrogenation reaction. Moreover, no appreciable deactivation was observed even after 700 h of continuous operation. These results introduce a novel approach for the development of confined catalysts with enhanced activity and long-term stability.

Electronic Supplementary Material

Download File(s)
7282_ESM.pdf (2.7 MB)

References

[1]

Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.

[2]

Leenders, S. H. A. M.; Gramage-Doria, R.; de Bruin, B.; Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 2015, 44, 433–448.

[3]

Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.

[4]

Grommet, A. B.; Feller, M.; Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 2020, 15, 256–271.

[5]

Wang, N.; Sun, Q. M.; Yu, J. H. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: A fascinating class of nanocatalysts. Adv. Mater. 2019, 31, 1803966.

[6]

Chai, Y. C.; Wu, G. J.; Liu, X. Y.; Ren, Y. J.; Dai, W. L.; Wang, C. M.; Xie, Z. K.; Guan, N. J.; Li, L. D. Acetylene-selective hydrogenation catalyzed by cationic nickel confined in zeolite. J. Am. Chem. Soc. 2019, 141, 9920–9927.

[7]

Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755–11759.

[8]

Sanlés-Sobrido, M.; Pérez-Lorenzo, M.; Rodríguez-González, B.; Salgueiriño, V.; Correa-Duarte, M. A. Highly active nanoreactors: Nanomaterial encapsulation based on confined catalysis. Angew. Chem., Int. Ed. 2012, 51, 3877–3882.

[9]

Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487.

[10]

Pan, X. L.; Bao, X. H. Reactions over catalysts confined in carbon nanotubes. Chem. Commun. 2008, 6271–6281.

[11]

Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.

[12]

Guan, J.; Pan, X. L.; Liu, X.; Bao, X. H. Syngas segregation induced by confinement in carbon nanotubes: A combined first-principles and Monte Carlo study. J. Phys. Chem. C 2009, 113, 21687–21692.

[13]

Abbaslou, R. M. M.; Tavassoli, A.; Soltan, J.; Dalai, A. K. Iron catalysts supported on carbon nanotubes for Fischer-Tropsch synthesis: Effect of catalytic site position. Appl. Catal. A: Gen. 2009, 367, 47–52.

[14]

Shifa, T. A.; Vomiero, A. Confined catalysis: Progress and prospects in energy conversion. Adv. Energy Mater. 2019, 9, 1902307.

[15]

Tessonnier, J. P.; Ersen, O.; Weinberg, G.; Pham-Huu, C.; Su, D. S.; Schlögl, R. Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes. ACS Nano 2009, 3, 2081–2089.

[16]

Gao, Z.; Qin, Y. Design and properties of confined nanocatalysts by atomic layer deposition. Acc. Chem. Res. 2017, 50, 2309–2316.

[17]

Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

[18]

Liu, J.; Zhang, J. T. Nanointerface chemistry: Lattice-mismatch-directed synthesis and application of hybrid nanocrystals. Chem. Rev. 2020, 120, 2123–2170.

[19]

Lyu, S.; Wang, S.; He, Z. Y.; Yang, J.; Xu, X.; Carabineiro, S. A. C.; Zhu, J. J. Lattice matching strategy to construct highly active hcp-Co phase for Fischer-Tropsch synthesis. ACS Mater. Lett. 2024, 6, 856–864.

[20]

Seo, W. S.; Shim, J. H.; Oh, S. J.; Lee, E. K.; Hur, N. H.; Park, J. T. Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. J. Am. Chem. Soc. 2005, 127, 6188–6189.

[21]

Qi, J. B.; Hu, X. The loss of ZnO as the support for metal catalysts by H2 reduction. Phys. Chem. Chem. Phys. 2020, 22, 3953–3958.

[22]

Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395.

[23]

Zhang, Y. H.; Liu, X. Y.; Li, Z.; Lyu, S.; Zhou, Y. Y.; Long, Y. H.; Li, J. L.; Wang, L. Nano-bricks assembly toward 1D metal oxide nanorods. Small 2024, 20, 2304944.

[24]

Sheng, Z. T.; Lyu, S.; Liu, X. Y.; Zhang, Y. H.; Li, J. L.; Zhu, J. J.; Carabineiro, S. A. C. Designing multielement nanointerfaces in supported catalysts by ultra small lattice mismatch. Appl. Surf. Sci. 2024, 646, 158918.

[25]

Li, G. R.; Hu, T.; Pan, G. L.; Yan, T. Y.; Gao, X. P.; Zhu, H. Y. Morphology-function relationship of ZnO: Polar planes, oxygen vacancies, and activity. J. Phys. Chem. C 2008, 112, 11859–11864.

[26]

McLaren, A.; Valdes-Solis, T.; Li, G. Q.; Tsang, S. C. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 2009, 131, 12540–12541.

[27]

ten Have, I. C.; Kromwijk, J. J. G.; Monai, M.; Ferri, D.; Sterk, E. B.; Meirer, F.; Weckhuysen, B. M. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nat. Commun. 2022, 13, 324.

[28]

Ji, Y. G.; Zhao, Z.; Duan, A. J.; Jiang, G. Y.; Liu, J. Comparative study on the formation and reduction of bulk and Al2O3-supported cobalt oxides by H2-TPR technique. J. Phys. Chem. C 2009, 113, 7186–7199.

[29]

Griffin, G. L.; Yates, J. T. Jr. Combined temperature-programmed desorption and infrared study of H2 chemisorption on ZnO. J. Catal. 1982, 73, 396–405.

[30]

Anderson, A. B.; Nichols, J. A. Hydrogen on zinc oxide. Theory of its heterolytic adsorption. J. Am. Chem. Soc. 1986, 108, 4742–4746.

[31]

Dong, C.; Mu, R. T.; Li, R. T.; Wang, J. Y.; Song, T. Y.; Qu, Z. P.; Fu, Q.; Bao, X. H. Disentangling local interfacial confinement and remote spillover effects in oxide-oxide interactions. J. Am. Chem. Soc. 2023, 145, 17056–17065.

[32]

Lyu, S.; Wu, Q. S.; Li, Z.; Zhang, Y. H.; Li, J. L.; Wang, L. Cobalt clusters decorated Co x Mn1- x O nanocomposites for improving the efficiency of syngas to lower olefins with lower CO2 emission. Appl. Catal. B: Environ. 2023, 325, 122347.

Nano Research
Article number: 94907282
Cite this article:
Zhang W, Luo Y, Carabineiro SA, et al. Stabilizing Co nanoparticles for CO2 hydrogenation by lattice-matching confinement in ZnO interlayers. Nano Research, 2025, 18(4): 94907282. https://doi.org/10.26599/NR.2025.94907282
Topics:

810

Views

170

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 13 December 2024
Revised: 22 January 2025
Accepted: 03 February 2025
Published: 04 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return