Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The construction of a thin stable shell to encapsulate perovskite with effective carrier transport is a promising strategy to fabricate highly efficient and stable perovskite based optoelectronic devices. However, it is generally difficult to control the thickness and location of the encapsulating materials, ideally on perovskite grains. In this work, we developed a one-step method for the growth of titanium alkoxide networks in-situ in perovskite film forming an encapsulating layer on perovskite nanograin homogeneously. The thin encapsulating network brings much enhanced stability and allows effective carrier transport simultaneously. Light emitting diode based on this composite shows much enhanced stability under continuous operation.
Bao, C. X.; Yuan, Z. C.; Niu, W. X.; Yang, J.; Wang, Z. J.; Yu, T.; Wang, J. P.; Gao, F. A multifunctional display based on photo-responsive perovskite light-emitting diodes. Nat. Electron. 2024, 7, 375–382.
Slotcavage, D. J.; Karunadasa, H. I.; McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 2016, 1, 1199–1205.
Xiao, Z. G.; Zhao, L. F.; Tran, N. L.; Lin, Y. L.; Silver, S. H.; Kerner, R. A.; Yao, N.; Kahn, A.; Scholes, G. D.; Rand, B. P. Mixed-halide perovskites with stabilized bandgaps. Nano Lett. 2017, 17, 6863–6869.
Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X. N.; Kosco, J.; Islam, M. S.; Haque, S. A. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.
Bischak, C. G.; Hetherington, C. L.; Wu, H.; Aloni, S.; Ogletree, D. F.; Limmer, D. T.; Ginsberg, N. S. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 2017, 17, 1028–1033.
Park, J. H.; Lee, A. Y.; Yu, J. C.; Nam, Y. S.; Choi, Y.; Park, J.; Song, M. H. Surface ligand engineering for efficient perovskite nanocrystal-based light-emitting diodes. ACS Appl. Mater. Interfaces 2019, 11, 8428–8435.
Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163–9168.
Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1023.
Chen, H.; Teale, S.; Chen, B.; Hou, Y.; Grater, L.; Zhu, T.; Bertens, K.; Park, S. M.; Atapattu, H. R.; Gao, Y. J. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photonics 2022, 16, 352–358.
Chen, C.; Song, Z. N.; Xiao, C. X.; Awni, R. A.; Yao, C. L.; Shrestha, N.; Li, C. W.; Bista, S. S.; Zhang, Y.; Chen, L. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: The role of suppressed ion migration. ACS Energy Lett. 2020, 5, 2560–2568.
Li, C.; Yao, J. S.; Xu, L. M.; Yang, Z.; Wang, S. L.; Cai, B.; Wang, J. D.; Fan, W. X.; Wang, Y.; Song, J. Z. Multifunctional ligand-manipulated luminescence and electric transport of CsPbI3 perovskite nanocrystals for red light-emitting diodes. Chem. Eng. J. 2024, 493, 152483.
Zou, Y. T.; Teng, P. P.; Xu, W. D.; Zheng, G. H. J.; Lin, W. H.; Yin, J.; Kobera, L.; Abbrent, S.; Li, X. C.; Steele, J. A. et al. Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nat. Commun. 2021, 12, 4831.
Dong, Y. Y.; Zhang, J.; Yang, Y. L.; Wang, J. Q.; Hu, B. Y.; Wang, W.; Cao, W.; Gai, S.; Xia, D. B.; Lin, K. F. et al. Multifunctional nanostructured host–guest POM@MOF with lead sequestration capability induced stable and efficient perovskite solar cells. Nano Energy 2022, 97, 107184.
Tang, X. H.; Zhang, T. J.; Chen, W. J.; Chen, H. Y.; Zhang, Z. C.; Chen, X. N.; Gu, H.; Kang, S. Q.; Han, C. S.; Xu, T. T. et al. Macromers for encapsulating perovskite photovoltaics and achieving high stability. Adv. Mater. 2024, 36, 2400218.
Xu, W. T.; Tu, B. B.; Liu, Q.; Shu, Y. F.; Liang, C. C.; Diercks, C. S.; Yaghi, O. M.; Zhang, Y. B.; Deng, H. X.; Li, Q. W. Anisotropic reticular chemistry. Nat. Rev. Mater. 2020, 5, 764–779.
He, H. J.; Cui, Y. J.; Li, B.; Wang, B.; Jin, C. H.; Yu, J. C.; Yao, L. J.; Yang, Y.; Chen, B. L.; Qian, G. D. Confinement of Perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence. Adv. Mater. 2019, 31, 1970036.
Guo, Q.; Ren, L. M.; Kumar, P.; Cybulskis, V. J.; Mkhoyan, K. A.; Davis, M. E.; Tsapatsis, M. A Chromium Hydroxide/MIL-101(Cr) MOF composite catalyst and its use for the selective isomerization of glucose to fructose. Angew. Chem. 2018, 130, 5020–5024.
Wu, S. F.; Li, Z.; Li, M. Q.; Diao, Y. X.; Lin, F.; Liu, T. T.; Zhang, J.; Tieu, P.; Gao, W. P.; Qi, F. et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 2020, 15, 934–940.
Tsai, H.; Shrestha, S.; Vilá, R. A.; Huang, W. X.; Liu, C. M.; Hou, C. H.; Huang, H. H.; Wen, X. W.; Li, M. X.; Wiederrecht, G. et al. Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal-organic frameworks. Nat. Photonics 2021, 15, 843–849.
Hou, J. W.; Wang, Z. L.; Chen, P.; Chen, V.; Cheetham, A. K.; Wang, L. Z. Intermarriage of halide perovskites and metal-organic framework crystals. Angew. Chem. Int., Ed. 2020, 59, 19434–19449.
Hou, J. W.; Chen, P.; Shukla, A.; Krajnc, A.; Wang, T. S.; Li, X. M.; Doasa, R.; Tizei, L. H. G.; Chan, B.; Johnstone, D. N. et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 2021, 374, 621–625.
Lee, C. C.; Chen, C. I.; Liao, Y. T.; Wu, K. C. W.; Chueh, C. C. Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv. Sci. 2019, 6, 1970030.
Tsai, H.; Huang, H. H.; Watt, J.; Hou, C. H.; Strzalka, J.; Shyue, J. J.; Wang, L.; Nie, W. Y. Cesium lead halide perovskite nanocrystals assembled in metal-organic frameworks for stable blue light emitting diodes. Adv. Sci. 2022, 9, 2105850.
Stassen, I.; Styles, M.; Grenci, G.; Van Gorp, H.; Vanderlinden, W.; De Feyter, S.; Falcaro, P.; Vos, D. D.; Vereecken, P.; Ameloot, R. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 2016, 15, 304–310.
Shang, Y. Q.; Liao, Y.; Wei, Q.; Wang, Z. Y.; Xiang, B.; Ke, Y. Q.; Liu, W. M.; Ning, Z. J. Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. Sci. Adv. 2019, 5, eaaw8072.
Zhang, Y.; Liu, Y.; Bao, W. D.; Zhang, X. Y.; Yan, P.; Yao, X.; Chen, M. Z.; Xie, T. Y.; Cao, L.; Cai, X. C. et al. Monolithic titanium alkoxide networks for lithium-ion conductive all-solid-state electrolytes. Nano Lett. 2023, 23, 4066–4073.
Wang, H.; Xu, W. D.; Wei, Q.; Peng, S.; Shang, Y. Q.; Jiang, X. Y.; Yu, D. N.; Wang, K.; Pu, R. H.; Zhao, C. X. et al. In situ growth of low-dimensional perovskite-based insular nanocrystals for highly efficient light emitting diodes. Light: Sci. Appl. 2023, 12, 62.
Ghimenti, S.; Tabucchi, S.; Bellagambi, F. G.; Lomonaco, T.; Onor, M.; Trivella, M. G.; Fuoco, R.; Di Francesco, F. Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography-mass spectrometry for exposure assessment of hospital staff. J. Pharm. Biomed. Anal. 2015, 106, 218–223.
Zhang, Z. H.; Zhao, Y. B. Transparent and high-porosity aluminum alkoxide network-forming glasses. Nat. Commun. 2024, 15, 7339.
Zhou, D.; Wang, L. L.; Chen, X. P.; Wei, X. J.; Liang, J. Z.; Tang, R.; Xu, Y. H. Reaction mechanism investigation on the esterification of rosin with glycerol over annealed Fe3O4/MOF-5 via kinetics and TGA-FTIR analysis. Chem. Eng. J. 2020, 401, 126024.
Zhou, Y. Y.; Sternlicht, H.; Padture, N. P. Transmission electron microscopy of halide perovskite materials and devices. Joule 2019, 3, 641–661.
Wu, D. Q.; Zhou, H. Y.; Lai, X. X.; Liu, X. X.; Sang, K. H.; Chen, Y.; Chen, M. H.; Wei, J. W.; Wu, S.; Pang, Q. et al. Eu-based porphyrin MOF enables high-performance carbon-based perovskite solar cells. Small 2024, 20, 2308783.
González-Carrero, S.; Galian, R. E.; Pérez-Prieto, J. Organometal halide perovskites: Bulk low-dimension materials and nanoparticles. Part. Part. Syst. Charact. 2015, 32, 709–720.
Zhou, X. W.; Zhao, Y.; Huang, W. Z.; Wu, Y. Y.; Wu, Z.; He, G. F. Enhanced performance of inverted CsPbBr3 nanocrystal LEDs via Zn(II) doping. Org. Electron. 2021, 96, 106253.
Ma, D. X.; Lin, K. B.; Dong, Y. T.; Choubisa, H.; Proppe, A. H.; Wu, D.; Wang, Y. K.; Chen, B.; Li, P. C.; Fan, J. Z. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 2021, 599, 594–598.
Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.
Han, E. Q.; Yun, J. SH.; Maeng, I.; Qiu, T. F.; Zhang, Y. R.; Choi, E.; Lee, S. M.; Chen, P.; Hao, M. M.; Yang, Y. et al. Efficient bifacial semi-transparent perovskite solar cells via a dimethylformamide-free solvent and bandgap engineering strategy. Nano Energy 2024, 131, 110136.
Wu, J. H.; Wang, R. J.; Zhang, R.; Portale, G.; Solano, E.; Liu, X. K.; Gao, F. Lattice reconstruction for mixed-halide blue perovskite light-emitting diodes with high brightness, outstanding color stability and low efficiency roll-off. Sci. China Mater. 2024, 67, 3553–3560.
Liang, S.; He, S.; Zhang, M. Y.; Yan, Y.; Jin, T.; Lian, T. Q.; Lin, Z. Q. Tailoring charge separation at meticulously engineered conjugated polymer/perovskite quantum dot interface for photocatalyzing atom transfer radical polymerization. J. Am. Chem. Soc. 2022, 144, 12901–12914.
Kong, L. M.; Luo, Y.; Wu, Q. Q.; Xiao, X. T.; Wang, Y. Z.; Chen, G.; Zhang, J. H.; Wang, K.; Choy, W. C. H.; Zhao, Y. B. et al. Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent. Light: Sci. Appl. 2024, 13, 138.
Xiong, W. T.; Tang, W. D.; Zhang, G.; Yang, Y. C.; Fan, Y. N.; Zhou, K.; Zou, C.; Zhao, B. D.; Di, D. W. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature 2024, 633, 344–350.
Li, Z.; Xiao, C. X.; Yang, Y.; Harvey, S. P.; Kim, D. H.; Christians, J. A.; Yang, M. J.; Schulz, P.; Nanayakkara, S. U.; Jiang, C. S. et al. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 2017, 10, 1234–1242.
Meggiolaro, D.; Mosconi, E.; De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 2019, 4, 779–785.
Wang, K.; Kim, J. H.; Yang, J.; Liu, X. K.; Dou, Y. X.; Li, Y. X.; Tao, W. J.; Dong, H. Y.; Zhu, H. M.; Wu, K. F. et al. Luminescent metal-halide perovskites: Fundamentals, synthesis, and light-emitting devices. Sci. China Chem. 2024, 67, 1776–1838.
Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248.
487
Views
71
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).