AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

In-situ growth of titanium alkoxide network encapsulated perovskite nanograin for robust light emission

Si Peng1,§Yunlong Liu1,§Ying Liu1,§Hao Wang1,2,3Mingyu Ma1Wenjia Zhou1,4Ruiqi Xu1Xianyuan Jiang1Danni Yu1Wei Zhou1Yingbo Zhao1,5( )Zhijun Ning1,5,6( )
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China

§ Si Peng, Yunlong Liu, and Ying Liu contributed equally to this work.

Show Author Information

Graphical Abstract

An in-situ method for the preparation of perovskite-titanium alkoxide network composite films is developed, in which perovskite nanograins are surrounded by titanium alkoxide network. The encapsulation layer enhanced activation energy for ion migration and the composite film shows much improved stability in different conditions. Light emitting device based on the film exhibits improved operation stability.

Abstract

The construction of a thin stable shell to encapsulate perovskite with effective carrier transport is a promising strategy to fabricate highly efficient and stable perovskite based optoelectronic devices. However, it is generally difficult to control the thickness and location of the encapsulating materials, ideally on perovskite grains. In this work, we developed a one-step method for the growth of titanium alkoxide networks in-situ in perovskite film forming an encapsulating layer on perovskite nanograin homogeneously. The thin encapsulating network brings much enhanced stability and allows effective carrier transport simultaneously. Light emitting diode based on this composite shows much enhanced stability under continuous operation.

Electronic Supplementary Material

Download File(s)
7272_ESM.pdf (2.8 MB)

References

[1]

Bao, C. X.; Yuan, Z. C.; Niu, W. X.; Yang, J.; Wang, Z. J.; Yu, T.; Wang, J. P.; Gao, F. A multifunctional display based on photo-responsive perovskite light-emitting diodes. Nat. Electron. 2024, 7, 375–382.

[2]

Slotcavage, D. J.; Karunadasa, H. I.; McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 2016, 1, 1199–1205.

[3]

Xiao, Z. G.; Zhao, L. F.; Tran, N. L.; Lin, Y. L.; Silver, S. H.; Kerner, R. A.; Yao, N.; Kahn, A.; Scholes, G. D.; Rand, B. P. Mixed-halide perovskites with stabilized bandgaps. Nano Lett. 2017, 17, 6863–6869.

[4]

Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X. N.; Kosco, J.; Islam, M. S.; Haque, S. A. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.

[5]

Bischak, C. G.; Hetherington, C. L.; Wu, H.; Aloni, S.; Ogletree, D. F.; Limmer, D. T.; Ginsberg, N. S. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 2017, 17, 1028–1033.

[6]

Park, J. H.; Lee, A. Y.; Yu, J. C.; Nam, Y. S.; Choi, Y.; Park, J.; Song, M. H. Surface ligand engineering for efficient perovskite nanocrystal-based light-emitting diodes. ACS Appl. Mater. Interfaces 2019, 11, 8428–8435.

[7]

Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163–9168.

[8]

Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1023.

[9]

Chen, H.; Teale, S.; Chen, B.; Hou, Y.; Grater, L.; Zhu, T.; Bertens, K.; Park, S. M.; Atapattu, H. R.; Gao, Y. J. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photonics 2022, 16, 352–358.

[10]

Chen, C.; Song, Z. N.; Xiao, C. X.; Awni, R. A.; Yao, C. L.; Shrestha, N.; Li, C. W.; Bista, S. S.; Zhang, Y.; Chen, L. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: The role of suppressed ion migration. ACS Energy Lett. 2020, 5, 2560–2568.

[11]

Li, C.; Yao, J. S.; Xu, L. M.; Yang, Z.; Wang, S. L.; Cai, B.; Wang, J. D.; Fan, W. X.; Wang, Y.; Song, J. Z. Multifunctional ligand-manipulated luminescence and electric transport of CsPbI3 perovskite nanocrystals for red light-emitting diodes. Chem. Eng. J. 2024, 493, 152483.

[12]

Zou, Y. T.; Teng, P. P.; Xu, W. D.; Zheng, G. H. J.; Lin, W. H.; Yin, J.; Kobera, L.; Abbrent, S.; Li, X. C.; Steele, J. A. et al. Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nat. Commun. 2021, 12, 4831.

[13]

Dong, Y. Y.; Zhang, J.; Yang, Y. L.; Wang, J. Q.; Hu, B. Y.; Wang, W.; Cao, W.; Gai, S.; Xia, D. B.; Lin, K. F. et al. Multifunctional nanostructured host–guest POM@MOF with lead sequestration capability induced stable and efficient perovskite solar cells. Nano Energy 2022, 97, 107184.

[14]

Tang, X. H.; Zhang, T. J.; Chen, W. J.; Chen, H. Y.; Zhang, Z. C.; Chen, X. N.; Gu, H.; Kang, S. Q.; Han, C. S.; Xu, T. T. et al. Macromers for encapsulating perovskite photovoltaics and achieving high stability. Adv. Mater. 2024, 36, 2400218.

[15]

Xu, W. T.; Tu, B. B.; Liu, Q.; Shu, Y. F.; Liang, C. C.; Diercks, C. S.; Yaghi, O. M.; Zhang, Y. B.; Deng, H. X.; Li, Q. W. Anisotropic reticular chemistry. Nat. Rev. Mater. 2020, 5, 764–779.

[16]

He, H. J.; Cui, Y. J.; Li, B.; Wang, B.; Jin, C. H.; Yu, J. C.; Yao, L. J.; Yang, Y.; Chen, B. L.; Qian, G. D. Confinement of Perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence. Adv. Mater. 2019, 31, 1970036.

[17]

Guo, Q.; Ren, L. M.; Kumar, P.; Cybulskis, V. J.; Mkhoyan, K. A.; Davis, M. E.; Tsapatsis, M. A Chromium Hydroxide/MIL-101(Cr) MOF composite catalyst and its use for the selective isomerization of glucose to fructose. Angew. Chem. 2018, 130, 5020–5024.

[18]

Wu, S. F.; Li, Z.; Li, M. Q.; Diao, Y. X.; Lin, F.; Liu, T. T.; Zhang, J.; Tieu, P.; Gao, W. P.; Qi, F. et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 2020, 15, 934–940.

[19]

Tsai, H.; Shrestha, S.; Vilá, R. A.; Huang, W. X.; Liu, C. M.; Hou, C. H.; Huang, H. H.; Wen, X. W.; Li, M. X.; Wiederrecht, G. et al. Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal-organic frameworks. Nat. Photonics 2021, 15, 843–849.

[20]

Hou, J. W.; Wang, Z. L.; Chen, P.; Chen, V.; Cheetham, A. K.; Wang, L. Z. Intermarriage of halide perovskites and metal-organic framework crystals. Angew. Chem. Int., Ed. 2020, 59, 19434–19449.

[21]

Hou, J. W.; Chen, P.; Shukla, A.; Krajnc, A.; Wang, T. S.; Li, X. M.; Doasa, R.; Tizei, L. H. G.; Chan, B.; Johnstone, D. N. et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 2021, 374, 621–625.

[22]

Lee, C. C.; Chen, C. I.; Liao, Y. T.; Wu, K. C. W.; Chueh, C. C. Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv. Sci. 2019, 6, 1970030.

[23]

Tsai, H.; Huang, H. H.; Watt, J.; Hou, C. H.; Strzalka, J.; Shyue, J. J.; Wang, L.; Nie, W. Y. Cesium lead halide perovskite nanocrystals assembled in metal-organic frameworks for stable blue light emitting diodes. Adv. Sci. 2022, 9, 2105850.

[24]

Stassen, I.; Styles, M.; Grenci, G.; Van Gorp, H.; Vanderlinden, W.; De Feyter, S.; Falcaro, P.; Vos, D. D.; Vereecken, P.; Ameloot, R. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 2016, 15, 304–310.

[25]

Shang, Y. Q.; Liao, Y.; Wei, Q.; Wang, Z. Y.; Xiang, B.; Ke, Y. Q.; Liu, W. M.; Ning, Z. J. Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. Sci. Adv. 2019, 5, eaaw8072.

[26]

Zhang, Y.; Liu, Y.; Bao, W. D.; Zhang, X. Y.; Yan, P.; Yao, X.; Chen, M. Z.; Xie, T. Y.; Cao, L.; Cai, X. C. et al. Monolithic titanium alkoxide networks for lithium-ion conductive all-solid-state electrolytes. Nano Lett. 2023, 23, 4066–4073.

[27]

Wang, H.; Xu, W. D.; Wei, Q.; Peng, S.; Shang, Y. Q.; Jiang, X. Y.; Yu, D. N.; Wang, K.; Pu, R. H.; Zhao, C. X. et al. In situ growth of low-dimensional perovskite-based insular nanocrystals for highly efficient light emitting diodes. Light: Sci. Appl. 2023, 12, 62.

[28]

Ghimenti, S.; Tabucchi, S.; Bellagambi, F. G.; Lomonaco, T.; Onor, M.; Trivella, M. G.; Fuoco, R.; Di Francesco, F. Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography-mass spectrometry for exposure assessment of hospital staff. J. Pharm. Biomed. Anal. 2015, 106, 218–223.

[29]

Zhang, Z. H.; Zhao, Y. B. Transparent and high-porosity aluminum alkoxide network-forming glasses. Nat. Commun. 2024, 15, 7339.

[30]

Zhou, D.; Wang, L. L.; Chen, X. P.; Wei, X. J.; Liang, J. Z.; Tang, R.; Xu, Y. H. Reaction mechanism investigation on the esterification of rosin with glycerol over annealed Fe3O4/MOF-5 via kinetics and TGA-FTIR analysis. Chem. Eng. J. 2020, 401, 126024.

[31]

Zhou, Y. Y.; Sternlicht, H.; Padture, N. P. Transmission electron microscopy of halide perovskite materials and devices. Joule 2019, 3, 641–661.

[32]

Wu, D. Q.; Zhou, H. Y.; Lai, X. X.; Liu, X. X.; Sang, K. H.; Chen, Y.; Chen, M. H.; Wei, J. W.; Wu, S.; Pang, Q. et al. Eu-based porphyrin MOF enables high-performance carbon-based perovskite solar cells. Small 2024, 20, 2308783.

[33]

González-Carrero, S.; Galian, R. E.; Pérez-Prieto, J. Organometal halide perovskites: Bulk low-dimension materials and nanoparticles. Part. Part. Syst. Charact. 2015, 32, 709–720.

[34]

Zhou, X. W.; Zhao, Y.; Huang, W. Z.; Wu, Y. Y.; Wu, Z.; He, G. F. Enhanced performance of inverted CsPbBr3 nanocrystal LEDs via Zn(II) doping. Org. Electron. 2021, 96, 106253.

[35]

Ma, D. X.; Lin, K. B.; Dong, Y. T.; Choubisa, H.; Proppe, A. H.; Wu, D.; Wang, Y. K.; Chen, B.; Li, P. C.; Fan, J. Z. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 2021, 599, 594–598.

[36]

Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

[37]

Han, E. Q.; Yun, J. SH.; Maeng, I.; Qiu, T. F.; Zhang, Y. R.; Choi, E.; Lee, S. M.; Chen, P.; Hao, M. M.; Yang, Y. et al. Efficient bifacial semi-transparent perovskite solar cells via a dimethylformamide-free solvent and bandgap engineering strategy. Nano Energy 2024, 131, 110136.

[38]

Wu, J. H.; Wang, R. J.; Zhang, R.; Portale, G.; Solano, E.; Liu, X. K.; Gao, F. Lattice reconstruction for mixed-halide blue perovskite light-emitting diodes with high brightness, outstanding color stability and low efficiency roll-off. Sci. China Mater. 2024, 67, 3553–3560.

[39]

Liang, S.; He, S.; Zhang, M. Y.; Yan, Y.; Jin, T.; Lian, T. Q.; Lin, Z. Q. Tailoring charge separation at meticulously engineered conjugated polymer/perovskite quantum dot interface for photocatalyzing atom transfer radical polymerization. J. Am. Chem. Soc. 2022, 144, 12901–12914.

[40]

Kong, L. M.; Luo, Y.; Wu, Q. Q.; Xiao, X. T.; Wang, Y. Z.; Chen, G.; Zhang, J. H.; Wang, K.; Choy, W. C. H.; Zhao, Y. B. et al. Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent. Light: Sci. Appl. 2024, 13, 138.

[41]

Xiong, W. T.; Tang, W. D.; Zhang, G.; Yang, Y. C.; Fan, Y. N.; Zhou, K.; Zou, C.; Zhao, B. D.; Di, D. W. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature 2024, 633, 344–350.

[42]

Li, Z.; Xiao, C. X.; Yang, Y.; Harvey, S. P.; Kim, D. H.; Christians, J. A.; Yang, M. J.; Schulz, P.; Nanayakkara, S. U.; Jiang, C. S. et al. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 2017, 10, 1234–1242.

[43]

Meggiolaro, D.; Mosconi, E.; De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 2019, 4, 779–785.

[44]

Wang, K.; Kim, J. H.; Yang, J.; Liu, X. K.; Dou, Y. X.; Li, Y. X.; Tao, W. J.; Dong, H. Y.; Zhu, H. M.; Wu, K. F. et al. Luminescent metal-halide perovskites: Fundamentals, synthesis, and light-emitting devices. Sci. China Chem. 2024, 67, 1776–1838.

[45]

Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248.

Nano Research
Article number: 94907272
Cite this article:
Peng S, Liu Y, Liu Y, et al. In-situ growth of titanium alkoxide network encapsulated perovskite nanograin for robust light emission. Nano Research, 2025, 18(4): 94907272. https://doi.org/10.26599/NR.2025.94907272

487

Views

71

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 November 2024
Revised: 22 January 2025
Accepted: 23 January 2025
Published: 01 April 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return